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Abstract 
In contrast to the human standard for mind established by Alan Turing, I search for a “minimal 
mind”, which is present in animals and even lower-level organisms. Mind is a tool for the 
classification and modeling of objects. Its origin marks an evolutionary transition from 
protosemiotic agents, whose signs directly control actions, to eusemiotic agents, whose signs 
correspond to ideal objects. The hallmark of mind is a holistic perception of objects, which is not 
reducible to individual features or signals. Mind can support true intentionality of agents because 
goals become represented by classes or states of objects. Basic components of mind appear in the 
evolution of protosemiotic agents, thus the emergence of mind was inevitable. The classification 
capacity of mind may have originated from the ability of organisms to classify states of their own 
body. Within primary modeling systems, ideal objects are not connected with each other and 
often tailored for specific functions, whereas in the secondary modeling system, ideal objects are 
independent from functions and become interconnected via arbitrarily established links. Testing 
of models can be described by commuting diagrams that integrate measurements, model 
predictions, object tracking, and actions. Language, which is the tertiary modeling system, 
supports efficient communication of models between individuals. 
 
1. Introduction 
Mind is traditionally considered as a human faculty responsible for conscious experience and 
intelligent thought. Components of mind include perception, memory, reason, logic, modeling of 
the world, motivation, emotion, and attention (Premack & Woodruff, 1978). This list can be 
easily expanded to other kinds of human mental activities. Defects in mental functions (e.g., in 
logic, attention, or communication) are considered as a loss of mind, partial or complete. In short, 
mind is a collection of mental functions in humans. However, this definition tells us nothing 
about the nature of mind. Human mental functions are so diverse that it is difficult to evaluate 
their relative importance. The only way to identify the most fundamental components of mind is 
to track its origin in animals, which inevitably leads us to the idea that mind exists beyond 
humans. Animal mental activities (i.e., “animal cognition”) are definitely more primitive 
compared to those of the human mind, but they include many common components: perception, 
memory, modeling of the world, motivation, and attention (Griffin, 1992; Sebeok, 1972). The 
lack of abstract reasoning in animals indicates that reason is not the most fundamental element of 
mind, but rather a late addition. 
 
By accepting the existence of mind in animals we commit ourselves to answer many difficult 
questions. For example, where is the lower evolutionary threshold for mind? Does mind require 
brain or at least some kind of nervous system? In other words, we enter the quest for the 
“minimal mind”, which is the topic of this chapter. This evolutionary approach is opposite to 
Turing’s criterion for machine intelligence, which is based on the ability of a human to 
distinguish between a computer and a human being based solely on communication with them 



(Turing, 1952). To be indistinguishable from a human, a machine should have a “maximal mind” 
that is functionally equivalent to the human mind. Here I propose that minimal mind is a tool for 
the classification and modeling of objects and that its origin marks an evolutionary transition 
from protosemiotic agents, whose signs directly control actions, to eusemiotic agents, whose 
signs correspond to ideal objects. 
 
2. Agents and functional information 
Mind is intrinsically related to life because it is a faculty of living systems. However, according 
to cybernetics, it can also exist in artificial devices (Nillson, 1998). To present a unified approach 
to mind, we need first to discuss briefly the nature of life and artifacts. Machine metaphor is 
often perceived as a misleading simplification of the phenomena of life and mind (Deacon, 2011; 
Emmeche & Hoffmeyer, 1991). The motivation to separate life and mind from machines comes 
from the fact that simple machines are manufactured and programmed by humans, whereas 
organisms are self-produced and develop from eggs into their definite shape (Swan & Howard, 
2012). Also, machines change their state following deterministic rules rather than internal goals 
and values. But, despite these differences, the progress in understanding life and mind seems to 
lie in bridging the gap between life and artifacts rather than in building a wall between them. In 
particular, biological evolution can be seen as a sequence of inventions of various instruments 
that are needed to perform living functions (Dennett, 1995). Cellular processes are based on 
molecular machines that copy sequences of nucleic acids, synthesize proteins, modify them and 
assemble them into new molecular machines. Thus, components of organisms are manufactured, 
and living systems are indeed artifacts (Barbieri, 2003). Although man-made machines lack 
some features of living organisms, this deficiency should be attributed to our insufficient 
knowledge and experience. Humans only just began learning how to make self-programmable 
and self-repairable mechanisms, whereas living cells mastered these skills billions of years ago. 
 
One of the heuristics of systems methodology is “functionalism”, which assumes that systems 
should be compared based solely on their functions rather than their material composition. This 
idea was initially proposed as a foundation for “relational biology” (Rashevsky, 1938; Rosen, 
1970), and later was formulated as “functional isomorphism” (Putnam, 1975). If an artificial 
system performs the same (or similar) functions as a living organism, then there is good reason 
to call it “alive”. However, it would be confusing to apply the term “living organism” to artificial 
devices. Instead, it is better to use the term “agent” which fits equally well to living organisms 
and artificial devices. Agents should not be viewed only as externally-programmed devices, as is 
commonly done in cybernetics. Although all agents carry external programs, the majority of 
agents, including all living organisms, also have self-generated programs. An agent is a system 
with spontaneous activity that selects actions to pursue its goals. Goals are considered in a broad 
sense, including both achievable events (e.g., capturing a resource, reproduction), and sustained 
values (e.g., energy balance). Some goals are externally programmed by parental agents or 
higher-level agents, and other goals emerge within agents. Note that mind is not necessarily 
present in agents. Simple agents can automatically perform goal-directed activities based on a 
program. 
 
In the field of artificial intelligence, ideas of functionalism are often misinterpreted as a primacy 
of the digital program over the body/hardware and environment. Internet-based programs like the 
virtual world of “Second Life” may convince people that their functionality can be fully digitized 



in the future. However, programs are not universal but instead tailored for specific bodies and 
environments, and therefore, can be exchanged without loss of functionality only between 
similar agents in similar environments. Thus, “digital immortality” is a myth (Swan & Howard, 
2012). Self-producing agents have many body-specific functions associated with metabolism, 
assembly of subagents, growth, development, and reproduction. Obviously, these functions 
cannot be realized in a qualitatively different body. But functional methodology works even in 
this case because the body can support a large number of alternative activities, and it needs 
information to organize and control these activities. In summary, agents require both specific 
material organization (body) and functional information to control their actions. 
 
Agents are always produced by other agents of comparable or higher functional complexity 
Sharov, 2006). This statement is an informational equivalent of the gradualism principle in the 
theory of evolution (Sharov, 2009b). The reason why agents cannot self-assemble spontaneously 
is that they carry substantial functional complexity. Long evolutionary (or learning) timelines are 
required to develop each new function via trail and error; therefore, simultaneous and fast 
emergence of numerous novel functions is unlikely. The origin of life does not contradict the 
principle of gradualism because primordial agents were extremely simple and started from single 
functions (Sharov, 2009a). The production of artificial agents by humans also satisfies the 
principle of gradualism because humans have a higher level of functional complexity than any 
human-made devices. Methods of agent manufacturing may include assembly from a set of parts, 
as well as self-organization and self-development. Although the majority of human-made agents 
is assembled, some of them use elements of development. For example, satellites can unfold and 
re-assemble in space after launch. Self-assembly is a common approach in nanotechnology and 
in synthetic organisms.  
 
3. Functional information 
Agents are unusual material objects whose dynamics cannot be effectively described by physics, 
although they do not contradict physics. Instead, a semiotic description appears more 
meaningful: agents carry functional information, which is a collection of signs that encode and 
control their functions. The adjective ‘functional’ helps to distinguish functional information 
from quantitative approaches developed by Shannon and Kolmogorov (Shannon, 1948; 
Kolmogorov, 1965). Although signs are material objects, they have functions within agents that 
are not directly associated with their physical properties. 
 
Semiotics stems from the work of Charles Sanders Peirce, who defined a sign as a triadic 
relationship between a sign vehicle, object, and interpretant, which is a product of an interpretive 
process or a content of interpretation (Peirce, 1998). However, not all agents can associate signs 
with content or meaning . Thus, I prefer a more generic definition of signs as objects that are 
used by agents to encode and control their functions (Sharov, 2010). Most signaling processes 
that take place within the cells of living organisms do not invoke ideal representations, but they 
encode and/or control cellular functions, and thus have a semiotic nature. Peirce deemphasized 
the role of agents in informational processes and did not consider the agent or organism as a 
component of the triadic sign relationship. He thought that meanings belonged to nature rather 
than to agents. For example, he wrote about nature’s ability to acquire habits, which is consistent 
with his philosophy of objective idealism. Similar views were expressed by Jesper Hoffmeyer 
who assumed ‘minding nature’ (Hoffmeyer, 2010). In contrast, I view signs only in connection 



with agents who use them, and see no reason to consider nature an agent. Although it may be 
hard to refute claims that the universe or Gaia are superorganisms (Lovelock 1979), I take a 
conservative approach and use the notion of ‘agent’ only for those systems that clearly show a 
reproducible goal-directed activity and carry functional information to organize this activity 
(Sharov, 2010). 
 
Functional information is inseparable from agents who use it. Living organisms are products of 
their genome, which controls their development and growth. In contrast, cybernetics often 
distinguishes information (software) from computational devices (hardware). The distinction of 
software and hardware is meaningful only for slave-agents like computers, which are produced 
and externally programmed by humans. A computer is similar to a ribosome in a living cell, 
because ribosomes are manufactured and externally programmed to make proteins. Programmed 
agents are often viewed as non-semiotic systems (Barbieri, 2008). However, this idea appears 
confusing because the execution of a program is a part of the semiotic activity of all agents, and 
agency is not possible without it. We humans are programmed genetically by our ancestors, 
behaviorally by our parents, and culturally by our society. These programs support our identity 
as a Homo sapiens species, as well as our race, sex, nationality, personality, and a whole range of 
physical and mental abilities. In addition to external programs, humans and most other organisms 
develop their own programs. When we learn new behaviors and skills we convert them into 
programs that can be executed automatically or with minimal intervention from our 
consciousness. These self-generated programs comprise our personal identity. Our freedom 
comprises only a tiny fraction of our functional behavior. In fact, freedom would be destructive 
if it were not well balanced with programmed functions that can correct mistakes. But evolution 
would not be possible if all agents were 100% externally programmed, and non-evolving agents 
would perish in changing environments. Thus, the role of fully-programmed agents is limited to 
supportive functions for other agents that are able to evolve and learn. 
 
The meaning of functional information is grounded in a communication system, which is a set of 
compatible communicating agents (Sharov, 2009c). For example, the genome alone does not 
mean anything; it has meaning only in relation to the organisms that use it. An egg can be 
viewed as a minimal interpreter of the genome (Hoffmeyer, 1997). Although the structure of an 
egg is encoded by the genome, a real egg is needed to interpret the genome correctly. Thus, 
heredity is based on a combination of [genome + egg] rather than on the genome alone. This 
leads us to the idea that functional information is not universal but has its meaning only in 
relation to a certain communication system. Even a single agent is involved in a continuous self-
communication through memory, and therefore can be viewed as a communication system. 
Memory is a message sent by an agent to its own future state, and its purpose is to preserve the 
agent’s ability to perform certain functions. Heredity is an extended self-communication, or 
inter-generation memory (Sharov, 2010). Other communication systems include multiple agents 
that exchange signals or messages. The most common example of such horizontal 
communication in living organisms is sexual reproduction, where the egg encounters an 
unfamiliar paternal genetic sequence. Agents from different communication systems do not 
exchange functional information on a regular basis because their interpretation modules are not 
fully compatible. For example, most interspecies hybrids in mammals are nonviable or sterile as 
a result of misinterpretation of the paternal genome. Communication systems often have a 
hierarchical structure. For example, species are partitioned into populations, which in turn are 



partitioned into colonies or families. Subagents within organisms (e.g., cells) make their own 
communication systems. Communication is often asymmetric when one kind of agent 
manipulates the functional information of another kind of agent. For example, agents can 
(re)program their sub-agents or offspring agents. Asymmetric communication often occurs 
between interacting organisms of different species (e.g., parasites reprogram their hosts, or preys 
mislead predators via mimicry and behavioral tricks). Because communication systems are 
multi-scale and interdependent, evolution happens at multiple levels simultaneously. 
 
4. Emergence of mind from elementary signaling processes 
Mind is not a necessary component of agents. Bacteria are examples of mindless agents that 
operate via elementary signaling processes such as DNA replication, transcription, translation, 
and molecular sensing. They do not perceive or classify objects in the outside world as humans 
do; instead they detect signals that directly control their actions. Direct control, however, may 
include multiple steps of signal transfer as well as logical gates. Following Prodi, I call this 
primitive level of semiosis “protosemiosis” (Prodi, 1988). Protosemiosis does not include 
classification or modeling of objects; it is ‘know-how’ without ‘know-what’. Because molecular 
signaling is so different from higher levels of semiosis, Eco excluded it from consideration in 
semiotics (Eco, 1976). However, the analysis of molecular signs in bacteria helps us to 
understand the origin and nature of signs in animals and humans; thus, protosemiosis should not 
be dismissed. Protosigns (i.e., signs used in protosemiosis) do not correspond to any object, 
which may seem confusing because our brains are trained to think in terms of objects. Although 
we associate a triplet of nucleotides in the mRNA with an amino acid as an object, a cell does not 
have a holistic internal representation of amino acid; thus, it is not an object for a cell. Instead, a 
triplet of nucleotides in the mRNA is associated with an action of tRNA and ribosome, which 
together append an amino acid to the growing protein chain. 
 
Mind represents a higher level of information processing compared to protosemiosis because it 
includes classification and modeling of objects and situations (e.g., food items, partner agents, 
and enemies). These classifications and models represent the ‘knowledge’ an agent has about 
itself and its environment, which are Innenwelt and Umwelt following the terminology of 
Uexküll (Uexküll, 1982). I proposed calling this new level of semiosis “eusemiosis” (Sharov, 
2012). Information processing in eusemiosis can no longer be tracked as a sequence of signal 
exchanges between components. Instead, it goes through multiple semi-redundant pathways, 
whose involvement may change from one instance to another, but invariantly converge on the 
same result. Thus, attractor domains are more important for understanding the dynamics of mind 
than individual signaling pathways. Classification of objects can be viewed as a three-step 
process. The first step is immediate perception, when various receptors send their signals to the 
mind, and these signals collectively reset the mind to a new state (or position in a phase space). 
The second step is the internal dynamics of mind which starts with the new state of mind and 
then converges to one of the attractors. This process is equivalent to recognition or classification. 
Each attractor represents a discrete meaningful category (e.g., fruit or predator), which I call 
‘ideal object’. In contrast to real objects that are components of the outside world, ideal objects 
exist within the mind and serve as tools for classifying real objects. Finally, at the third step, the 
ideal object acts as a checkpoint to initiate some other function (physical or mental). 
 



Ideal objects do not belong to a different parallel universe as claimed by Popper (1999). Instead 
they are tools used by agents to perceive and manipulate the real world. Following the “law of 
the instrument” attributed to Mark Twain, to a man with a hammer, everything looks like a nail. 
Thus, ideal objects within mind determine how the outside world is perceived and changed. Ideal 
objects are implemented as functional subunits within complex material systems, for example, as 
specific patterns of neuron activity or “brain-objects” (Swan & Goldberg, 2010). But the material 
implementation of ideal objects is flexible whereas the function is stable. Similarly, computer 
programs are functionally stable despite the fact that they are loaded each time into a different 
portion of physical memory and executed by a different processor (if available). 
 
‘Object’ is one of the most complex and abstract notions in human thought. However, we should 
not transfer all this complexity to simple agents like worms or shells. For example, we usually 
distinguish between objects and their attributes, where attributes are generic (e.g., whiteness) and 
can be applied to various classes of objects. Although we cannot directly assess the minds of 
simple agents, it is unlikely that they can contemplate generic attributes. Simple agents 
distinguish between classes of objects but they do it unconsciously without considering attributes 
as independent entities. Humans can think of hypothetical ideal objects (e.g., unicorns), which 
include certain combinations of abstract attributes. Obviously, simple agents are not able to do 
that. Another difference is that humans can recognize individual objects whereas simple agents 
cannot distinguish objects within the same functional category. Learning and modeling capacities 
of mind have progressed substantially in evolution (see below), and we should not expect that 
simple agents have the same flexibility in connecting and manipulating of ideal objects as 
humans do. 
 
Mind is a necessary tool for intentional behavior, which I consider a higher level of goal-directed 
activity. In contrast to protosemiotic agents, mind-equipped agents have holistic representations 
of their goals, which are perceived as ideal objects and integrate a large set of sensorial data. For 
example, immune cells of eukaryotic organisms can recognize a viral infection by the shape of 
the viral proteins as well as by specific features of viral nucleic acids, and launch a defense 
response by producing interferon, antibodies, and cytokines. Memory T-cells keep information 
on the properties of viral proteins acquired during the previous exposure to the same virus. 
 
Goals may emerge internally within agents, however they can be also programmed externally. 
For example, instinctive behavior of organisms is programmed genetically by ancestors. In this 
case, ideal objects develop somehow together with the growing brain. External programming of 
goals is also typical for artificial minds in robotic devices equipped with automated image 
processing modules (Cariani, 1998, 2011). For example, a self-guided missile is programmed to 
classify objects into targets and non-targets and to follow the target. Agents with externally-
programmed mind can support a given static set of functions in agents, but they lack adaptability, 
and would not be able to keep competitive advantage in changing environments. Thus, 
autonomous agents need adaptive minds capable of improving existing ideal objects and creating 
new ones via learning. Mind can generate new behaviors by creating novel attractors in the field 
of perception states and linking them with specific actions. If such behaviors prove useful, they 
can become habits and contribute to the success of agents. Requirement of learning does not 
imply that mind-carrying agents learn constantly. Minds may persist and function successfully in 



a non-learning state for a long time. Most artificial minds are static replicas of some portion of 
the dynamic human mind. But minds cannot improve without learning. 
 
The statement “minds cannot improve without learning” is correct if applied to individual agents; 
however limited improvements of minds are possible in lineages of self-reproducing non-
learning agents via genetic selection. Mutations may cause the appearance of new attractors in 
the dynamic state of non-learning minds or new links between ideal objects and actions. If these 
heritable representations help agents to perform some functions, the agents will reproduce and 
disseminate new behaviors within the population. This process, however, is slow and inefficient 
because of several problems. First, genetic selection can hardly produce any results in such 
highly redundant systems as minds because most changes of individual elements have no effects 
on the behavior. In other words, the fitness landscape is almost flat. Second, mind is a complex 
and well-tuned system; thus any heritable change to individual elements that does have a 
phenotype is likely to be disruptive. Third, the functionality of mind has to be assessed in each 
situation separately, because it may work in some cases but not in others. Genetic selection 
depends mostly on the worst outcome from a single life-threatening situation, and thus it is 
ineffective for improving the performance of mind in individual situations. But despite these 
problems it is conceivable that limited improvements on mind can be achieved by genetic 
selection. This helps us to explain how most primitive non-learning minds appeared in the 
evolution of protosemiotic agents. Moreover, simple learning algorithms may emerge in the 
evolution of mind solely via genetic selection, making minds adaptable and partially independent 
from the genetic selection (see below). But genetic mechanisms are still important for the 
functionality of mind even in humans because the architecture of the brain is heritable. 
 
5. Components of minimal mind can emerge within protosemiotic agents 
Because the emergence of mind is a qualitative change in organisms, it is difficult to understand 
the intermediate steps of this process. Here I argue that all necessary components of mind, which 
include semi-redundant signaling pathways, stable attractors, and adaptive learning, can emerge 
at the protosemiotic level. Moreover, these components emerge not as parts of mind (which does 
not exist yet), but as tools that increase the efficiency of other simpler functions.  
 
Redundancy of signaling pathways may seem to be a waste of valuable resources; however, it 
appears beneficial for agents in the long run. First, redundancy ensures the reliability of signaling. 
If one pathway is blocked (e.g., as a result of injury, stress, or infection), then normal functions 
can be restored via alternate pathways. Each cell has multiple copies of all kinds of membrane-
bound receptors because cells cannot predict the direction of incoming signals and thus distribute 
receptors around the whole surface. Second, redundant signaling pathways may generate novel 
combinatorial signals. For example, one photoreceptor can only distinguish different intensities 
of light, but multiple photoreceptors can identify the direction of light and even distinguish 
shapes. Third, redundant signaling pathways increase the adaptability of agents because some of 
them may start controlling novel functions in subsequent evolution. 
 
Stable attractors are common to most auto-regulated systems, including simple devices with a 
negative feedback (e.g., a Watts pressure regulator). Stability is necessary for all living 
organisms to maintain vital functions at optimal rates. Any function that escapes regulation may 
become harmful and lead to disease or death. However, simple stability in the form of steady 



states is usually not sufficient for living organisms. Reproduction, growth, and the development 
of organisms require more complex regulation pathways that combine stability with change in a 
form of limit cycles, branching trajectories, and even chaotic attractors (Waddington, 1968). 
 
Genetic mechanisms are not suitable for learning because the sequence of nucleotides in the 
DNA is not rewritable (although limited editing is possible). In contrast, simple autocatalytic 
networks can switch between two stable states (“on” and “off”) and serve as a dynamic memory 
for the cell. Moreover, such networks can support primitive learning (e.g., sensitization and 
habituation) as well as associative learning as follows from a simple model of two interacting 
genes (Ginsburg & Jablonka, 2009). In this model, genes A and B are activated by different 
signals Sa and Sb, and the product Pa of gene A has 3 functions: (1) it induces a specific 
phenotype or physiological response; (2) it stimulates temporarily the expression of gene A so 
that the gene remains active for some time after the initial signal Sa; and (3) it makes the 
expression of gene A dependent on the product Pb of gene B. If gene A is silent, then signal Sb 
activates gene B but its activity does not produce any phenotype. However, if signal Sb comes 
shortly after signal Sa, then the product Pb will activate gene A and produce a phenotype. This 
network belongs to the protosemiotic level because it is based on fixed interactions between few 
components. 
 
Because all components of minimal mind can appear within protosemiotic agents, the emergence 
of mind seems inevitable. But there is still a problem of how to combine these components. In 
particular, the level of complexity of signaling pathways should increase to support a large 
number of dynamically interconnected attractors, and learning mechanisms have to change from 
individual ad-hoc assembled simple signaling networks to streamlined ideal objects. In other 
words, agents have to develop standard building blocks for constructing ideal objects and equip 
these blocks with flexible control means. It appears that epigenetic mechanisms can convert 
DNA segments into standard building blocks of mind, as discussed in the following section.  
 
6. Epigenetic regulation may have supported the emergence of minimal mind 
It is difficult to pinpoint the emergence of mind on the evolutionary tree of life. However, it is 
certain that mind appeared in eukaryotic organisms with well-developed epigenetic regulation. 
Epigenetic mechanisms include various changes in cells that are long-lasting but do not involve 
alterations of the DNA sequence. I will consider only those epigenetic mechanisms that are 
mediated by chromatin structure because they are likely to have facilitated the emergence of 
mind. Chromatin consists of DNA assembled together with histones, which are specific proteins 
that support the stability of DNA and regulate its accessibility to transcription factors. Histones 
can be modified in many ways (e.g., acetylated, methylated, phosphorylated, or ubiquitinated) by 
molecular agents and these modifications affect the way histones bind to each other and interact 
with DNA and other proteins. Some modifications convert chromatin to a highly condensed state 
(heterochromatin), other modifications support loose chromatin structure (euchromatin), which 
allows binding of transcription factors and subsequent activation of mRNA synthesis (Jeanteur, 
2005). Molecular agents can both read and edit histone marks. In particular, they can modify 
newly-recruited histones after DNA replication in agreement with marks on the partially retained 
parental histones (Jeanteur, 2005). As a result, chromatin states survive cell division and are 
transferred to both daughter cells. Thus, chromatin-based memory signs can reliably carry 
rewritable information through cell lineages and control differentiation of embryos (Markoš & 



Švorcová, 2009). The chromatin state depends not only on histone marks but also on other 
proteins that establish links between distal DNA segments, as well as links between chromatin 
and nuclear envelopes. These proteins, which include insulators, mediators, cohesions, and 
lamins, create and maintain a complex 3-dimensional structure of the chromatin (Millau & 
Gaudreau, 2011). Distal links create new neighborhoods and change the context for chromatin 
assembly.  
 
Epigenetic mechanisms are important for the origin and function of mind because: (1) they 
support a practically unlimited number of attractors, (2) these attractors can be utilized as 
rewritable memory signs, and (3) chromatin attractors can become interconnected via products of 
co-localized genes. Chromatin structure is repaired after mild perturbations by special molecular 
agents that edit histone marks. These repair mechanisms ensure the stability of attractors in the 
field of chromatin states. However, strong perturbations may cross the boundary between 
attractors and chromatin would converge to another stable (or quasi-stable) state, which means 
over-writing the chromatin memory. Specific states of chromatin are spatially associated with 
certain genes, and these genes become activated or repressed depending on the chromatin state. 
Active genes produce proteins (e.g., transcription factors) which may regulate chromatin state at 
other genome locations. Association of chromatin with DNA is not sequence-specific, which 
gives organisms the flexibility to establish regulatory links between any subsets of genes. 
 
The combination of these three features of chromatin can support adaptive learning at the cellular 
level. As a toy model, consider a gene that can be activated via multiple regulatory modules in its 
promoter. Initially the chromatin is loose at all regulatory modules, and therefore, DNA is 
accessible to transcription factors. Eventually, a successful action of a cell (e.g., capturing food) 
may become a “memory triggering event”, which forces the chromatin to condense at all 
regulatory modules except for the one that was functional at the time of the event. Then, as the 
cell encounters a similar pattern of signaling next time, only one regulatory module would 
become active - the one that previously mediated a successful action. Modification of chromatin 
(i.e., opening or closing) is controlled by the production of certain transcription factors that move 
from the cytoplasm to the nucleus and find specific DNA patterns where they bind. But how can 
transcription factors differentiate between active and non-active regulatory modules, so that only 
non-active modules become closed? This kind of context-dependent activity is possible thanks to 
the interaction between multiple transcription factors that are located close enough along the 
DNA sequence. For example, binding of the P300 protein to the regulatory module indicates on-
going activity of this module (Visel et al., 2009), and transcription factors may have opposite 
effects on the chromatin depending on whether they are bound to DNA alone or in combination 
with P300. This kind of mechanism may support associative learning at the initial steps of the 
emergence of mind. An important component of this mechanism is the ability of an agent to 
classify its own states as ‘success’ or ‘failure’, and activate memory in the case of success. 
 
 The importance of chromatin is supported by the fact that mechanisms of learning and memory 
in the nervous system include DNA methylation and histone acetylation (Levenson & Sweatt, 
2005; Miller & Sweatt, 2007). However, it is plausible that mind appeared even before the 
emergence of the nervous system. For example, unicellular ciliates have elements of non-
associative learning (Wood, 1992), and even associative learning (Armus, Montgomery, & 
Gurney, 2006). Plants, fungi, sponges, and other multicellular organisms without nervous 



systems are all likely to anticipate and learn, although their responses are much slower than in 
animals (Ginsburg & Jablonka, 2009; Krampen, 1981). It is reasonable to assume that mind 
functions were initially based on intracellular mechanisms and only later they were augmented 
via communication between cells. Then a multicellular brain should be viewed as a community 
of cellular “brains” represented by the nuclei of neurons. The idea that cellular semiosis is the 
basis for the functionality of the brain has been recently proposed by Baslow (Baslow, 2011). 
The human brain consists of one hundred billion neurons and each neuron has thousands of 
synaptic links with other neurons. Synapses of single neurons are all specialized in various 
functions; some of them are active, while others are repressed. Thus, a neuron has to ‘know its 
synapses” because otherwise signals coming in from different synapses would be mixed up. In 
addition, neurons have to distinguish temporal patterns of signals coming from each synapse 
(Baslow, 2011). Individual neurons need at least minimal mind capacity to classify these 
complex inputs. 
 
Baslow proposed that the “operating system” of neurons is based on metabolism (Baslow, 2011). 
Although active metabolism is indeed required for the functioning of neurons, it does not seem to 
be specific for mind and cannot explain how cells learn to recognize and process new signaling 
patterns. The cellular level of mind is more likely to be controlled by epigenetic regulatory 
mechanisms in the nucleus. In multicellular organisms, however, many additional processes are 
involved in learning and memory, such as the establishment of synaptic connections between 
neurons and the specialization of neural sub-networks for controlling specific behaviors. 
 
Mind appears as a new top-level regulator of organism functions, but it does not replace already 
existing hardwired protosemiotic networks. Many low-level functions do not require complex 
regulation; they are well controlled by direct signaling, and replacing them with a learning 
mechanism would be costly and inefficient. However, some hard-programmed processes like 
embryo development may acquire partial guidance from the minds of individual cells or from the 
brain. Neurons establish functional feedback regulation of growing organs, where non-functional 
cells or cell parts (e.g., synapses) are eliminated (Edelman, 1988). In other words, cells attempt 
to find a ‘job’ in the body that fits to an available functional niche and the cell’s pre-history. If a 
job is not found, then the cell goes into apoptosis. 
 
7. The first object classified by minimal mind was the body 
The initial task of mind was to classify those objects that are most important for the life of an 
organism. Because an agent’s body is most intimately linked with a large number of functions, 
we can hypothesize that the body was the first object to be classified by mind. The purpose of 
classifying body states is to assign priorities to various functions, such as the search for food, 
defense from enemies, and reproduction. Functions of protosemiotic agents are directly 
controlled by internal and external signs and therefore priorities are fixed by a heritable signaling 
network. In contrast, agents with mind can learn to distinguish body states and adjust the priority 
of functions based on previous experience.  
 
Of the two components of mind, Innenwelt (classifications and models of self) and Umwelt 
(classifications and models of external objects), Innenwelt is primary and Umwelt is secondary. 
Simple agents do not distinguish between internal and external sensations. It requires additional 
complexity for agents to realize that there are external objects beyond signals that come from 



receptors. The main difference between ‘internal’ and ‘external’ worlds is a higher predictability 
of the internal world and a lower predictability of the external world. Thus, it is reasonable to 
presume that Umwelt emerged as a less predictable portion of a former Innenwelt. This 
evolutionary approach to the differentiation of ‘external’ from ‘internal’ is profoundly different 
from cybernetics, where the boundary between the system and environment is defined a priori. 
 
The capacity of mind to classify and model objects is closely related to the ability of agents to 
track objects. In particular, agents can rely on the assumption that objects keep their properties 
over time. For example, a predator that is chasing an object identified previously as prey does not 
need to repeat identification over and over again. Similarly, modeling appears most beneficial if 
the agent keeps track of the predicted object. Thus, tracking of objects by agents augments the 
utility of classification and modeling. The advantage of body as the first classified and modeled 
object is that it is always accessible, and thus, agents do not need additional skills for object 
tracking. 
 
8. Modeling functions of mind 
Modeling, which can be defined as prediction or anticipation of something unperceived, is the 
second major function of mind after the classification of objects. Elements of modeling are 
present in any classification, because ideal objects are already models. Recognition of an object 
is based on the anticipated combination of traits, as follows from the extensively explored area of 
image recognition. Some of these models are fixed whereas others include parameters that are 
adjusted to increase the likelihood of a match between the model and sensorial data (Perlovsky, 
Deming, & Ilin, 2011). For example, distance to the object can be used as a parameter which 
affects the size and resolution of the image as well as its position relative to other objects. These 
simple models belong to the primary modeling system, where ideal objects are not connected and 
therefore not used for prediction or anticipation of something different than what is perceived. 
Some of them are pure sensations, and others are integral sensation-actions. As an example of 
sensation-action, consider a moth that by instinct starts laying eggs after recognizing its host 
plant. 
 
Advanced models that establish relationships between ideal objects belong to the secondary 
modeling system (Sebeok, 1987). For example, if a bird attempts to eat a wasp and gets stung, 
then it connects the ideal object of a wasp with pain. As a result, this bird will not attempt to eat 
anything that looks like a wasp because the image of a wasp reminds it of pain. It was suggested 
that the secondary modeling system is handled by the interpretive component of the brain, 
whereas cybernetic and instinctive components handle the primary modeling (Barbieri, 2011). 
The secondary modeling system establishes links between various ideal objects, and therefore 
allows agents to develop flexible relationships between signs and functions. The origin of the 
secondary modeling system can be associated with the emergence of powerful sense organs that 
provided animals with more information than was needed for immediate functions. As a result, 
the classification of objects became more detailed and partially independent from their utility. 
Using a combination of a large number of traits, animals are able to recognize individual objects, 
associate them with each other, and make a mental map of their living space. Individual objects 
are then united into functionally relevant classes. Animals also can use abstract ideal objects that 
correspond to individual traits (e.g., color, shape, or weight) of real objects. Dynamic models 
associate the current state of an object with future states of the same object. They are used by 



predators to predict the movement of their prey. Association models predict the presence of one 
object from the observation of another kind of object. For example, animals associate smoke 
with forest fires and attempt to escape to a safe location. 
 
One of the recent approaches to model-building is dynamic logic (Perlovsky et al., 2011). The 
idea is to maximize the likelihood of matching between the set of models with adjustable 
parameters to the set of empirical data. Each model corresponds to a potential object, which can 
be added or deleted in the process of optimization. The accuracy of comparison between object-
models increases and model parameters are adjusted as optimization progresses. This approach 
explains two important aspects of modeling. First, detection of objects is not possible without 
models because models specify what we are looking for. And second, objects can be measured 
using optimal parameters of object-models (although this is not the only way to measure objects). 
Because the data are referenced by space and time, models include motion equations and yield 
plausible trajectories of object-models. However, all object-models identified with this method 
are primary ideal objects (i.e., they belong to the primary modeling system). Connections 
between primary objects have to be established at a higher level of the hierarchy of objects 
(Perlovsky et al., 2011).  
 
Models are the main subject of Peirce’s semiotics, where the perceived object is a sign vehicle 
that brings into attention the interpretant, or associated ideal object. The primary modeling 
system operates with icons, which are associated with isolated ideal objects (sensations or 
sensation-actions), whereas the secondary modeling system also includes indexes which are the 
links between ideal objects (Sebeok & Danesi, 2000). Peirce, however, viewed sign relationships 
as components of the world rather than models developed by agents. He believed that models 
were embedded in the world. The danger of this philosophy (i.e., objective idealism) is that it 
easily leads to dogmatism as models become overly trusted. But how can we evaluate the 
relationship between a model and reality? Models can be used in two ways: they can be trusted 
and they can be tested. When a bird does not attempt to catch wasps after being stung, it trusts 
the model of a wasp. However, not all models generate reproducible results, and therefore 
models need to be tested and modified if necessary. 
 
9. Testing models 
Model testing is one of the most important activities in science, and it has direct implications for 
epistemology (Cariani, 2011; Popper, 1999; Rosen, 1991; Turchin, 1977). Animals also test 
models, but they do not run experiments for the sake of testing hypotheses as humans do. Instead, 
they evaluate the success rates of their behavioral strategies and establish preferences for more 
successful behaviors. In this way, predators learn how to chase and capture prey, and birds learn 
how to attract the attention of predators away from their nests. 
 
Model testing is a complex procedure that determines if predictions generated by the model 
match the real world. In the simplest case, an agent measures the initial state of the object, and 
the obtained results are used as input for the model. Then the output of the model is compared to 
the measurement of the final state of the object, and if they match, the test is considered 
successful (Cariani, 2011; Rosen, 1991; Turchin, 1977). To formalize model testing, we need to 
generalize our terms. First, the expression “initial state of the object” implies that agents have a 
method for tracking objects. In particular, each object O is associated with the final object G(O), 



where G is the tracking function. Second, objects are characterized either quantitatively by 
measurements or qualitatively by the identification of individual features or by classifying whole 
objects. In result, each object O becomes associated with some ideal object M(O) in mind, which 
is interpreted as a measurement of that object. In general, agents use multiple measurement 
methods M1, M2, ... Mn, which are applicable in different situations. Similarly, in science, we use 
different measurement devices and sensors to characterize objects. Finally, the model is a map, F, 
between ideal objects in mind. For example, a dynamic model associates initial measurements of 
an object with measurements of its final state. Then successful model testing can be represented 
by a commuting diagram (Fig. 1), where measurement of the final state of the object, M2(G(O)), 
matches to the model output from the measurement of the initial state of the object used as input, 
F(M1(O)). Two measurement methods M1 and M2 may be the same, but in the general case they 
are different. If the equation M2(G(O)) = F(M1(O)) is true for all available objects, then the 
model F is universal relative to measurement methods M1 and M2 and tracking method G. 
 
 
 
 
 
 
 
 
Figure 1. Commuting diagram of model testing. M2 and M2 are measurement methods for the 
initial object O, and final object, G(O), respectively; G is the object tracking function, and F is 
the map between ideal objects in the model. 
 
 
Commuting diagrams, similar to Fig. 1, were proposed previously (Cariani, 2011), but function 
G was interpreted as objective natural dynamics of the world. In contrast, I associate function G 
with an agent’s ability to track or manipulate objects. An example of non-trivial object tracking 
is the association of the “morning star” with the “evening star” (i.e., planet Venus) on the basis 
of the model of planetary movement. This example illustrates that all four components of the 
model relation (F, G, M1, M2) are interdependent epistemic tools, and one component may help 
us to improve another component. 
 
Cariani suggested that the manipulation of objects is the reverse of measurement, and therefore 
he changed the direction of function M1 (Cariani, 2011). This approach, however, implies that 
real objects are created from ideal objects without any matter. In contrast, I suggest associating 
the manipulation of objects with various tracking functions G. Some G-functions may represent a 
passive experiment, where objects are mapped to their natural future state, whereas other G-
functions represent active experiments where objects are mapped into their products after 
specific manipulations. If we want to construct meta-models that describe multiple methods of 
object manipulation, then each method i should be linked with a corresponding model Fi and 
object tracking method Gi. 
 
Commuting diagrams of model testing capture a very important aspect of epistemology: the 
equivalence is achieved in the domain of ideal objects rather than in the domain of real objects. 
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Thus, different models may equally well capture the same process or relationship in the real 
world. The second conclusion is that models are always tested together with measurement 
methods and tracking methods, which are usually ignored in physics. As a result, agents from 
one communication system cannot take advantage of models developed within another 
communication system if measurement methods and tracking methods do not match. 
 
According to the critical rationalism of Popper, a model, whose predictions are wrong, should be 
removed from the domain of science (Popper, 1999). However, this rarely happens; instead, 
model components (F, G, M1, M2) are adjusted to make the diagram in Fig. 1 commuting. Popper 
condemned this practice because it makes hypotheses non-falsifiable. However, Popper’s 
argument does not make sense from the evolutionary point of view. If animals rejected any 
model that once had generated a wrong result, then they would soon run out of models and fail to 
perform their functions. Any model is a product of evolution and learning and integrates long-
term experience of agents. It is better to have a non-accurate or non-universal model than no 
model at all. This explains why models are so persistent both in biological evolution and in 
human culture. 
 
10. Model transfer between individuals 
Most models used by animals are not communicated to other individuals. Thus, each animal has 
to develop its own models based on trial and error as well as heritable predispositions. However, 
social interactions may facilitate the development of models in young animals. For example, 
animals may copy the behavior of their parents and eventually acquire their models in a faster 
way than by pure trial and error. However, efficient communication of models is possible only 
by language, which corresponds to the cultural level of semiosis, following the terminology of 
Kull (Kull, 2009). In language, signs do not only correspond to ideal objects, they also replicate 
the structure of relationships between ideal objects in the model. Thus, language itself becomes 
the modeling environment called the tertiary modeling system (Sebeok & Danesi, 2000). 
Language is based on symbols which are signs whose meanings are established by convention 
within the communication system. Then, a message with two (or more) interconnected symbols 
is interpreted as a link between corresponding ideal objects within the model. Thus, the tertiary 
modeling system is based on symbols (Sebeok & Danesi, 2000). 
 
In conclusion, minimal mind is a tool used by agents to classify and model the objects. 
Classification ends up at the ideal object, which serves as a checkpoint to initiate certain physical 
or mental functions. Mind is projected to appear within eukaryotic cells with well-developed 
epigenetic regulation because these mechanisms can convert DNA segments into standard 
information-processing modules with multiple attractor domains and flexible control. 
Classification and modeling of objects had started from the body of agent and then expanded to 
external objects. Modeling functions of mind progressed from primary models that simply 
support classification of objects to secondary models that interconnect ideal objects, and finally, 
to tertiary models that can be communicated to other agents. 
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