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Abstract

In contrast to the human standard for mind estiaétidy Alan Turing, | search for a “minimal
mind”, which is present in animals and even loveafel organisms. Mind is a tool for the
classification and modeling of objects. Its origiarks an evolutionary transition from
protosemiotic agents, whose signs directly corgotions, to eusemiotic agents, whose signs
correspond to ideal objects. The hallmark of mmd holistic perception of objects, which is not
reducible to individual features or signals. Mirahesupport true intentionality of agents because
goals become represented by classes or stategeotlBasic components of mind appear in the
evolution of protosemiotic agents, thus the emergai mind was inevitable. The classification
capacity of mind may have originated from the &pibf organisms to classify states of their own
body. Within primary modeling systems, ideal olgesite not connected with each other and
often tailored for specific functions, whereashe secondary modeling system, ideal objects are
independent from functions and become intercondedtearbitrarily established links. Testing

of models can be described by commuting diagramsinitegrate measurements, model
predictions, object tracking, and actions. Languadech is the tertiary modeling system,
supports efficient communication of models betwieelividuals.

1. Introduction

Mind is traditionally considered as a human facuétyponsible for conscious experience and
intelligent thought. Components of mind includegagtion, memory, reason, logic, modeling of
the world, motivation, emotion, and attention (Paeitn& Woodruff, 1978). This list can be

easily expanded to other kinds of human mentavities. Defects in mental functions (e.g., in
logic, attention, or communication) are consideaed loss of mind, partial or complete. In short,
mind is a collection of mental functions in humadswever, this definition tells us nothing

about the nature of mind. Human mental functioessardiverse that it is difficult to evaluate
their relative importance. The only way to identifig most fundamental components of mind is
to track its origin in animals, which inevitablyalgs us to the idea that mind exists beyond
humans. Animal mental activities (i.e., “animal ndggn”) are definitely more primitive

compared to those of the human mind, but they @elmany common components: perception,
memory, modeling of the world, motivation, and atien (Griffin, 1992; Sebeok, 1972). The

lack of abstract reasoning in animals indicates rs@son is not the most fundamental element of
mind, but rather a late addition.

By accepting the existence of mind in animals wamit ourselves to answer many difficult
guestions. For example, where is the lower evahaiip threshold for mind? Does mind require
brain or at least some kind of nervous system2Haravords, we enter the quest for the
“minimal mind”, which is the topic of this chaptérhis evolutionary approach is opposite to
Turing’s criterion for machine intelligence, whichbased on the ability of a human to
distinguish between a computer and a human beisgdosolely on communication with them



(Turing, 1952). To be indistinguishable from a humna machine should have a “maximal mind”
that is functionally equivalent to the human miki@re | propose that minimal mind is a tool for
the classification and modeling of objects and ifsabrigin marks an evolutionary transition
from protosemiotic agents, whose signs directlyti@mactions, to eusemiotic agents, whose
signs correspond to ideal objects.

2. Agentsand functional infor mation

Mind is intrinsically related to life because itagaculty of living systems. However, according
to cybernetics, it can also exist in artificial és (Nillson, 1998). To present a unified approach
to mind, we need first to discuss briefly the nataf life and artifacts. Machine metaphor is
often perceived as a misleading simplificationhaf phenomena of life and mind (Deacon, 2011,
Emmeche & Hoffmeyer, 1991). The motivation to sepafife and mind from machines comes
from the fact that simple machines are manufactaretiprogrammed by humans, whereas
organisms are self-produced and develop from egggheir definite shape (Swan & Howard,
2012). Also, machines change their state followdeterministic rules rather than internal goals
and values. But, despite these differences, thgress in understanding life and mind seems to
lie in bridging the gap between life and artifa@ther than in building a wall between them. In
particular, biological evolution can be seen asguence of inventions of various instruments
that are needed to perform living functions (Dehri95). Cellular processes are based on
molecular machines that copy sequences of nuateds asynthesize proteins, modify them and
assemble them into new molecular machines. Thuspooents of organisms are manufactured,
and living systems are indeed artifacts (BarbRB0D3). Although man-made machines lack
some features of living organisms, this deficiesbguld be attributed to our insufficient
knowledge and experience. Humans only just begamileg how to make self-programmable
and self-repairable mechanisms, whereas living ceéistered these skills billions of years ago.

One of the heuristics of systems methodology iscfionalism”, which assumes that systems
should be compared based solely on their functiatiger than their material composition. This
idea was initially proposed as a foundation fotdtienal biology” (Rashevsky, 1938; Rosen,
1970), and later was formulated as “functional iegoshism” (Putnam, 1975). If an artificial
system performs the same (or similar) functiona kgng organism, then there is good reason
to call it “alive”. However, it would be confusirtg apply the term “living organism” to artificial
devices. Instead, it is better to use the termritigehich fits equally well to living organisms

and artificial devices. Agents should not be viewaty as externally-programmed devices, as is
commonly done in cybernetics. Although all agerisycexternal programs, the majority of
agents, including all living organisms, also haek-generated programs. An agent is a system
with spontaneous activity that selects actionsuigye its goals. Goals are considered in a broad
sense, including both achievable events (e.g.udagta resource, reproduction), and sustained
values (e.g., energy balance). Some goals arenadieprogrammed by parental agents or
higher-level agents, and other goals emerge wébants. Note that mind is not necessarily
present in agents. Simple agents can automatigaifprm goal-directed activities based on a
program.

In the field of artificial intelligence, ideas airictionalism are often misinterpreted as a primacy
of the digital program over the body/hardware amgdrenment. Internet-based programs like the
virtual world of “Second Life” may convince peoftet their functionality can be fully digitized



in the future. However, programs are not univebsdlinstead tailored for specific bodies and
environments, and therefore, can be exchanged wtithss of functionality only between
similar agents in similar environments. Thus, “thgimmortality” is a myth (Swan & Howard,
2012). Self-producing agents have many body-speftifictions associated with metabolism,
assembly of subagents, growth, development, amdaaption. Obviously, these functions
cannot be realized in a qualitatively different oBut functional methodology works even in
this case because the body can support a largeenwhhblternative activities, and it needs
information to organize and control these actigiti®@ summary, agents requiveth specific
material organization (body) and functional infotioa to control their actions.

Agents are always produced by other agents of cabfgor higher functional complexity
Sharov, 2006). This statement is an informationaivealent of the gradualism principle in the
theory of evolution (Sharov, 2009b). The reason afpgnts cannot self-assemble spontaneously
is that they carry substantial functional comphgxitong evolutionary (or learning) timelines are
required to develop each new function via trail amdr; therefore, simultaneous and fast
emergence of numerous novel functions is unlikéhe origin of life does not contradict the
principle of gradualism because primordial agergsevextremely simple and started from single
functions (Sharov, 2009a). The production of a@i agents by humans also satisfies the
principle of gradualism because humans have a highel of functional complexity than any
human-made devices. Methods of agent manufactunaginclude assembly from a set of parts,
as well as self-organization and self-developma&lthiough the majority of human-made agents
is assembled, some of them use elements of develdpifor example, satellites can unfold and
re-assemble in space after launch. Self-assemblg@nmon approach in nanotechnology and
in synthetic organisms.

3. Functional information

Agents are unusual material objects whose dynacaicsot be effectively described by physics,
although they do not contradict physics. Insteagkraiotic description appears more
meaningful: agents carry functional information,ievhis a collection of signs that encode and
control their functions. The adjective ‘function&ilps to distinguish functional information
from quantitative approaches developed by ShanndrKalmogorov (Shannon, 1948;
Kolmogorov, 1965). Although signs are material clgethey have functions within agents that
are not directly associated with their physicalgendies.

Semiotics stems from the work of Charles Sandeirs®avho defined a sign as a triadic
relationship between a sign vehicle, object, aterpretant, which is a product of an interpretive
process or a content of interpretation (Peirce8l99owever, not all agents can associate signs
with content or meaning . Thus, | prefer a moreegierdefinition of signs as objects that are
used by agents to encode and control their fungt{Sharov, 2010). Most signaling processes
that take place within the cells of living organgsdo not invoke ideal representations, but they
encode and/or control cellular functions, and thage a semiotic nature. Peirce deemphasized
the role of agents in informational processes adahdt consider the agent or organism as a
component of the triadic sign relationship. He tgjlduthat meanings belonged to nature rather
than to agents. For example, he wrote about natatglity to acquire habits, which is consistent
with his philosophy of objective idealism. Simildews were expressed by Jesper Hoffmeyer
who assumed ‘minding nature’ (Hoffmeyer, 2010)cémtrast, | view signs only in connection



with agents who use them, and see no reason tadeomature an agent. Although it may be
hard to refute claims that the universe or Gaissaperorganisms (Lovelock 1979), | take a
conservative approach and use the notion of ‘ageny for those systems that clearly show a
reproducible goal-directed activity and carry fuocal information to organize this activity
(Sharov, 2010).

Functional information is inseparable from agent®wse it. Living organisms are products of
their genome, which controls their development gradvth. In contrast, cybernetics often
distinguishes information (software) from compudagl devices (hardware). The distinction of
software and hardware is meaningful only for slagents like computers, which are produced
and externally programmed by humans. A computsimidlar to a ribosome in a living cell,
because ribosomes are manufactured and extermatlygmmed to make proteins. Programmed
agents are often viewed as non-semiotic systembi@a 2008). However, this idea appears
confusing because the execution of a program &teop the semiotic activity of all agents, and
agency is not possible without it. We humans aogi@mmed genetically by our ancestors,
behaviorally by our parents, and culturally by eaciety. These programs support our identity
as aHomo sapienspecies, as well as our race, sex, nationalitggolity, and a whole range of
physical and mental abilities. In addition to errprograms, humans and most other organisms
develop their own programs. When we learn new hemaand skills we convert them into
programs that can be executed automatically or mitiimal intervention from our
consciousness. These self-generated programs @aquit personal identity. Our freedom
comprises only a tiny fraction of our functionahlaeior. In fact, freedom would be destructive
if it were not well balanced with programmed fuoat that can correct mistakes. But evolution
would not be possible if all agents were 100% ety programmed, and non-evolving agents
would perish in changing environments. Thus, the ob fully-programmed agents is limited to
supportive functions for other agents that are &bkvolve and learn.

The meaning of functional information is groundedicommunication system, which is a set of
compatible communicating agents (Sharov, 2009a)ekample, the genome alone does not
mean anything; it has meaning only in relationh® dérganisms that use it. An egg can be
viewed as a minimal interpreter of the genome (heffer, 1997). Although the structure of an
egg is encoded by the genome, a real egg is needeigrpret the genome correctly. Thus,
heredity is based on a combination of [genome + egger than on the genome alone. This
leads us to the idea that functional informationas universal but has its meaning only in
relation to a certain communication system. Eveimgle agent is involved in a continuous self-
communication through memory, and therefore cavidd®ed as a communication system.
Memory is a message sent by an agent to its ownefigtate, and its purpose is to preserve the
agent’s ability to perform certain functions. Hatgds an extended self-communication, or
inter-generation memory (Sharov, 2010). Other comipation systems include multiple agents
that exchange signals or messages. The most corxaomple of such horizontal
communication in living organisms is sexual reprctchn, where the egg encounters an
unfamiliar paternal genetic sequence. Agents frdfarént communication systems do not
exchange functional information on a regular basisause their interpretation modules are not
fully compatible. For example, most interspeciebrids in mammals are nonviable or sterile as
a result of misinterpretation of the paternal geao@ommunication systems often have a
hierarchical structure. For example, species artipaed into populations, which in turn are



partitioned into colonies or families. Subagentthim organisms (e.g., cells) make their own
communication systems. Communication is often asgtrimwhen one kind of agent
manipulates the functional information of anothiexdkof agent. For example, agents can
(re)program their sub-agents or offspring agensymmetric communication often occurs
between interacting organisms of different spe(@es., parasites reprogram their hosts, or preys
mislead predators via mimicry and behavioral tficBecause communication systems are
multi-scale and interdependent, evolution happénsudtiple levels simultaneously.

4. Emergence of mind from elementary signaling processes

Mind is not a necessary component of agents. Bacdee examples of mindless agents that
operate via elementary signaling processes subiNasreplication, transcription, translation,
and molecular sensing. They do not perceive osiflasbjects in the outside world as humans
do; instead they detect signals that directly adritreir actions. Direct control, however, may
include multiple steps of signal transfer as wellagical gates. Following Prodi, | call this
primitive level of semiosis “protosemiosis” (Pro@R88). Protosemiosis does not include
classification or modeling of objects; it is ‘kndwew’ without ‘know-what’. Because molecular
signaling is so different from higher levels of sesis, Eco excluded it from consideration in
semiotics (Eco, 1976). However, the analysis ofetalar signs in bacteria helps us to
understand the origin and nature of signs in ardrantl humans; thus, protosemiosis should not
be dismissed. Protosigns (i.e., signs used in peondosis) do not correspond to any object,
which may seem confusing because our brains arett#@o think in terms of objects. Although
we associate a triplet of nucleotides in the mRN#wan amino acid as an object, a cell does not
have a holistic internal representation of amind;atus, it is not an object for a cell. Instead,
triplet of nucleotides in the mRNA is associatethvan action of tRNA and ribosome, which
together append an amino acid to the growing prateain.

Mind represents a higher level of information ps®sirg compared to protosemiosis because it
includes classification and modeling of objects andations (e.g., food items, partner agents,
and enemies). These classifications and modelssept the ‘knowledge’ an agent has about
itself and its environment, which are Innenwelt &irdwelt following the terminology of

Uexkdll (Uexkdll, 1982). | proposed calling thisméevel of semiosis “eusemiosis” (Sharov,
2012). Information processing in eusemiosis cafonger be tracked as a sequence of signal
exchanges between components. Instead, it goaggthraultiple semi-redundant pathways,
whose involvement may change from one instancaathar, but invariantly converge on the
same result. Thus, attractor domains are more itrapbfor understanding the dynamics of mind
than individual signaling pathways. Classificatmfrobjects can be viewed as a three-step
process. The first step is immediate perceptiorgenwrarious receptors send their signals to the
mind, and these signals collectively reset the ninal new state (or position in a phase space).
The second step is the internal dynamics of minathvitarts with the new state of mind and
then converges to one of the attractors. This p®teequivalent to recognition or classification.
Each attractor represents a discrete meaningfegoay (e.qg., fruit or predator), which | call
‘ideal object’. In contrast to real objects thae abnmponents of the outside world, ideal objects
exist within the mind and serve as tools for cligasgy real objects. Finally, at the third step, the
ideal object acts as a checkpoint to initiate sother function (physical or mental).



Ideal objects do not belong to a different parall@lerse as claimed by Popper (1999). Instead
they are tools used by agents to perceive and miatgthe real world. Following the “law of

the instrument” attributed to Mark Twain, to a maith a hammer, everything looks like a nail.
Thus, ideal objects within mind determine how thésae world is perceived and changed. Ideal
objects are implemented as functional subunitsiwitbmplex material systems, for example, as
specific patterns of neuron activity or “brain-odf® (Swan & Goldberg, 2010). But the material
implementation of ideal objects is flexible wher#aes function is stable. Similarly, computer
programs are functionally stable despite the fa&t they are loaded each time into a different
portion of physical memory and executed by a déiféprocessor (if available).

‘Object’ is one of the most complex and abstradioms in human thought. However, we should
not transfer all this complexity to simple agerite Worms or shells. For example, we usually
distinguish between objects and their attributdsen attributes are generic (e.g., whiteness) and
can be applied to various classes of objects. Aljhave cannot directly assess the minds of
simple agents, it is unlikely that they can contatggeneric attributes. Simple agents
distinguish between classes of objects but theily dioconsciously without considering attributes
as independent entities. Humans can think of hygimi#l ideal objects (e.g., unicorns), which
include certain combinations of abstract attribu@sviously, simple agents are not able to do
that. Another difference is that humans can recmmdividual objects whereas simple agents
cannot distinguish objects within the same fun@laategory. Learning and modeling capacities
of mind have progressed substantially in evolu{gee below), and we should not expect that
simple agents have the same flexibility in conmggctind manipulating of ideal objects as
humans do.

Mind is a necessary tool for intentional behawanjch | consider a higher level of goal-directed
activity. In contrast to protosemiotic agents, meglipped agents have holistic representations
of their goals, which are perceived as ideal okjectd integrate a large set of sensorial data. For
example, immune cells of eukaryotic organisms eaognize a viral infection by the shape of
the viral proteins as well as by specific featwksiral nucleic acids, and launch a defense
response by producing interferon, antibodies, amokmnes. Memory T-cells keep information

on the properties of viral proteins acquired dutimg previous exposure to the same virus.

Goals may emerge internally within agents, howéiey can be also programmed externally.
For example, instinctive behavior of organismsrisgpammed genetically by ancestors. In this
case, ideal objects develop somehow together Wélgtowing brain. External programming of
goals is also typical for artificial minds in robotlevices equipped with automated image
processing modules (Cariani, 1998, 2011). For exanapself-guided missile is programmed to
classify objects into targets and non-targets arfdltow the target. Agents with externally-
programmed mind can support a given static sairdtfons in agents, but they lack adaptability,
and would not be able to keep competitive advantagbanging environments. Thus,
autonomous agents need adaptive minds capablgpodwing existing ideal objects and creating
new ones via learning. Mind can generate new behaty creating novel attractors in the field
of perception states and linking them with speafitions. If such behaviors prove useful, they
can become habits and contribute to the succeagearits. Requirement of learning does not
imply that mind-carrying agents learn constantlynd4 may persist and function successfully in



a non-learning state for a long time. Most art#leninds are static replicas of some portion of
the dynamic human mind. But minds cannot improviaeit learning.

The statement “minds cannot improve without leaghis correct if applied to individual agents;
however limited improvements of minds are possiblineages of self-reproducing non-
learning agents via genetic selection. Mutationyg oause the appearance of new attractors in
the dynamic state of non-learning minds or newdibktween ideal objects and actions. If these
heritable representations help agents to performedonctions, the agents will reproduce and
disseminate new behaviors within the populatioris pinocess, however, is slow and inefficient
because of several problems. First, genetic selecan hardly produce any results in such
highly redundant systems as minds because mosgebsaf individual elements have no effects
on the behavior. In other words, the fitness laadeds almost flat. Second, mind is a complex
and well-tuned system; thus any heritable changedieidual elements that does have a
phenotype is likely to be disruptive. Third, thedtionality of mind has to be assessed in each
situation separately, because it may work in soases but not in others. Genetic selection
depends mostly on the worst outcome from a sinflehreatening situation, and thus it is
ineffective for improving the performance of mindindividual situations. But despite these
problems it is conceivable that limited improvenseot mind can be achieved by genetic
selection. This helps us to explain how most piiraihon-learning minds appeared in the
evolution of protosemiotic agents. Moreover, sinlpbrning algorithms may emerge in the
evolution of mind solely via genetic selection, nmakminds adaptable and partially independent
from the genetic selection (see below). But germagchanisms are still important for the
functionality of mind even in humans because tlohitecture of the brain is heritable.

5. Components of minimal mind can emerge within protosemiotic agents

Because the emergence of mind is a qualitativegdhanorganisms, it is difficult to understand
the intermediate steps of this process. Here leatigat all necessary components of mind, which
include semi-redundant signaling pathways, stalttactors, and adaptive learning, can emerge
at the protosemiotic level. Moreover, these comptsemerge not as parts of mind (which does
not exist yet), but as tools that increase theiefficy of other simpler functions.

Redundancy of signaling pathways may seem to bastevof valuable resources; however, it
appears beneficial for agents in the long run.tFieslundancy ensures the reliability of signaling.
If one pathway is blocked (e.g., as a result afripjstress, or infection), then normal functions
can be restored via alternate pathways. Each aslhtultiple copies of all kinds of membrane-
bound receptors because cells cannot predict teetdin of incoming signals and thus distribute
receptors around the whole surface. Second, redtisamaling pathways may generate novel
combinatorial signals. For example, one photorewregdn only distinguish different intensities

of light, but multiple photoreceptors can identifye direction of light and even distinguish
shapes. Third, redundant signaling pathways inerdasadaptability of agents because some of
them may start controlling novel functions in supgant evolution.

Stable attractors are common to most auto-regutstgms, including simple devices with a
negative feedback (e.g., a Watts pressure regul&tability is necessary for all living
organisms to maintain vital functions at optimdesa Any function that escapes regulation may
become harmful and lead to disease or death. Howsiveple stability in the form of steady



states is usually not sufficient for living orgamis. Reproduction, growth, and the development
of organisms require more complex regulation pagsahat combine stability with change in a
form of limit cycles, branching trajectories, angke chaotic attractors (Waddington, 1968).

Genetic mechanisms are not suitable for learnimgiree the sequence of nucleotides in the
DNA is not rewritable (although limited editingg®ssible). In contrast, simple autocatalytic
networks can switch between two stable states (&orl’ “off”) and serve as a dynamic memory
for the cell. Moreover, such networks can suppdniive learning (e.g., sensitization and
habituation) as well as associative learning dsevicd from a simple model of two interacting
genes (Ginsburg & Jablonka, 2009). In this modehegA andB are activated by different
signalsS, andS,, and the produd®, of geneA has 3 functions: (1) it induces a specific
phenotype or physiological response; (2) it stireddemporarily the expression of gexnso

that the gene remains active for some time afeeirttial signalS;; and (3) it makes the
expression of gen& dependent on the produgs of geneB. If geneA is silent, then signd,
activates genB but its activity does not produce any phenotypaweler, if signals, comes
shortly after signak,, then the produd®, will activate gené\ and produce a phenotype. This
network belongs to the protosemiotic level becalsebased on fixed interactions between few
components.

Because all components of minimal mind can app&arprotosemiotic agents, the emergence
of mind seems inevitable. But there is still a peob of how to combine these components. In
particular, the level of complexity of signalingtpaays should increase to support a large
number of dynamically interconnected attractorsl l@arning mechanisms have to change from
individual ad-hoc assembled simple signaling neksdo streamlined ideal objects. In other
words, agents have to develop standard buildingkisléor constructing ideal objects and equip
these blocks with flexible control means. It apgdhat epigenetic mechanisms can convert
DNA segments into standard building blocks of miasidiscussed in the following section.

6. Epigenetic regulation may have supported the emer gence of minimal mind

It is difficult to pinpoint the emergence of mind the evolutionary tree of life. However, it is
certain that mind appeared in eukaryotic organisiitts well-developed epigenetic regulation.
Epigenetic mechanisms include various changeslis tbat are long-lasting but do not involve
alterations of the DNA sequence. | will considelyadhose epigenetic mechanisms that are
mediated by chromatin structure because they kb lto have facilitated the emergence of
mind. Chromatin consists of DNA assembled togetvitr histones, which are specific proteins
that support the stability of DNA and regulateatsessibility to transcription factors. Histones
can be modified in many ways (e.g., acetylatedhgiated, phosphorylated, or ubiquitinated) by
molecular agents and these modifications affectdng histones bind to each other and interact
with DNA and other proteins. Some modifications wenh chromatin to a highly condensed state
(heterochromatin), other modifications support ®okromatin structure (euchromatin), which
allows binding of transcription factors and subsagactivation of mMRNA synthesis (Jeanteur,
2005). Molecular agents can both read and edibiéstnarks. In particular, they can modify
newly-recruited histones after DNA replication gr@ement with marks on the partially retained
parental histones (Jeanteur, 2005). As a resulbnaditin states survive cell division and are
transferred to both daughter cells. Thus, chrordadised memory signs can reliably carry
rewritable information through cell lineages andtcol differentiation of embryos (Markos &



Svorcova, 2009). The chromatin state depends rgtosnhistone marks but also on other
proteins that establish links between distal DNgrsents, as well as links between chromatin
and nuclear envelopes. These proteins, which iedlusulators, mediators, cohesions, and
lamins, create and maintain a complex 3-dimensisimatture of the chromatin (Millau &
Gaudreau, 2011). Distal links create new neighbmie@nd change the context for chromatin
assembly.

Epigenetic mechanisms are important for the orégid function of mind because: (1) they
support a practically unlimited number of attrastdR) these attractors can be utilized as
rewritable memory signs, and (3) chromatin attnectan become interconnected via products of
co-localized genes. Chromatin structure is repaafeet mild perturbations by special molecular
agents that edit histone marks. These repair m&harensure the stability of attractors in the
field of chromatin states. However, strong perttidres may cross the boundary between
attractors and chromatin would converge to anatedle (or quasi-stable) state, which means
over-writing the chromatin memory. Specific stadéshromatin are spatially associated with
certain genes, and these genes become activatedressed depending on the chromatin state.
Active genes produce proteins (e.g., transcripféators) which may regulate chromatin state at
other genome locations. Association of chromatith\BNA is not sequence-specific, which
gives organisms the flexibility to establish redats links between any subsets of genes.

The combination of these three features of chranmatn support adaptive learning at the cellular
level. As a toy model, consider a gene that caadbeated via multiple regulatory modules in its
promoter. Initially the chromatin is loose at abulatory modules, and therefore, DNA is
accessible to transcription factors. Eventuallyyecessful action of a cell (e.g., capturing food)
may become a “memory triggering event”, which fertlee chromatin to condense at all
regulatory modules except for the one that wastfonal at the time of the event. Then, as the
cell encounters a similar pattern of signaling riewe, only one regulatory module would
become active - the one that previously mediateacaessful action. Modification of chromatin
(i.e., opening or closing) is controlled by theghwotion of certain transcription factors that move
from the cytoplasm to the nucleus and find spe@INA patterns where they bind. But how can
transcription factors differentiate between acawel non-active regulatory modules, so that only
non-active modules become closed? This kind ofecdrdependent activity is possible thanks to
the interaction between multiple transcription ¢astthat are located close enough along the
DNA sequence. For example, binding of the P300gmmdb the regulatory module indicates on-
going activity of this module (Visel et al., 2008)d transcription factors may have opposite
effects on the chromatin depending on whether éneybound to DNA alone or in combination
with P300. This kind of mechanism may support assive learning at the initial steps of the
emergence of mind. An important component of théihanism is the ability of an agent to
classify its own states as ‘success’ or ‘failusgid activate memory in the case of success.

The importance of chromatin is supported by tloe thzat mechanisms of learning and memory
in the nervous system include DNA methylation arstidme acetylation (Levenson & Sweatt,
2005; Miller & Sweatt, 2007). However, it is plablka that mind appeared even before the
emergence of the nervous system. For example, llutégeciliates have elements of non-
associative learning (Wood, 1992), and even asseei@arning (Armus, Montgomery, &
Gurney, 2006). Plants, fungi, sponges, and othdticallular organisms without nervous



systems are all likely to anticipate and learmaligh their responses are much slower than in
animals (Ginsburg & Jablonka, 2009; Krampen, 19813.reasonable to assume that mind
functions were initially based on intracellular rhanisms and only later they were augmented
via communication between cells. Then a multicalildrain should be viewed as a community
of cellular “brains” represented by the nuclei efirons. The idea that cellular semiosis is the
basis for the functionality of the brain has beerently proposed by Baslow (Baslow, 2011).
The human brain consists of one hundred billiorroresiand each neuron has thousands of
synaptic links with other neurons. Synapses oflsingurons are all specialized in various
functions; some of them are active, while otheesrapressed. Thus, a neuron has to ‘know its
synapses” because otherwise signals coming in fliferent synapses would be mixed up. In
addition, neurons have to distinguish temporalgpagt of signals coming from each synapse
(Baslow, 2011). Individual neurons need at leastirmal mind capacity to classify these
complex inputs.

Baslow proposed that the “operating system” of aesiiis based on metabolism (Baslow, 2011).
Although active metabolism is indeed required far tunctioning of neurons, it does not seem to
be specific for mind and cannot explain how cedrh to recognize and process new signaling
patterns. The cellular level of mind is more likébybe controlled by epigenetic regulatory
mechanisms in the nucleus. In multicellular organrsishowever, many additional processes are
involved in learning and memory, such as the estailent of synaptic connections between
neurons and the specialization of neural sub-nétsvimr controlling specific behaviors.

Mind appears as a new top-level regulator of orgarfunctions, but it does not replace already
existing hardwired protosemiotic networks. Many {@wel functions do not require complex
regulation; they are well controlled by direct saing, and replacing them with a learning
mechanism would be costly and inefficient. Howegeme hard-programmed processes like
embryo development may acquire partial guidance fitee minds of individual cells or from the
brain. Neurons establish functional feedback regnadf growing organs, where non-functional
cells or cell parts (e.g., synapses) are elimin@ieldiman, 1988). In other words, cells attempt
to find a ‘job’ in the body that fits to an availefunctional niche and the cell’s pre-historyalf
job is not found, then the cell goes into apoptosis

7. Thefirst object classified by minimal mind was the body

The initial task of mind was to classify those altgethat are most important for the life of an
organism. Because an agent’s body is most intimétéded with a large number of functions,
we can hypothesize that the body was the firstablbgebe classified by mind. The purpose of
classifying body states is to assign prioritiegddous functions, such as the search for food,
defense from enemies, and reproduction. Functibpsobosemiotic agents are directly
controlled by internal and external signs and tloeeepriorities are fixed by a heritable signaling
network. In contrast, agents with mind can leardistinguish body states and adjust the priority
of functions based on previous experience.

Of the two components of mind, Innenwelt (classificns and models of self) and Umwelt
(classifications and models of external object®)ehwelt is primary and Umwelt is secondary.
Simple agents do not distinguish between interndlexternal sensations. It requires additional
complexity for agents to realize that there areml objects beyond signals that come from



receptors. The main difference between ‘internadl @xternal’ worlds is a higher predictability
of the internal world and a lower predictabilitytbe external world. Thus, it is reasonable to
presume that Umwelt emerged as a less predictabli®p of a former Innenwelt. This
evolutionary approach to the differentiation oftemal’ from ‘internal’ is profoundly different
from cybernetics, where the boundary between thesyand environment is defined a priori.

The capacity of mind to classify and model objéstdosely related to the ability of agents to
track objects. In particular, agents can rely anabksumption that objects keep their properties
over time. For example, a predator that is chaamgbject identified previously as prey does not
need to repeat identification over and over agaimilarly, modeling appears most beneficial if
the agent keeps track of the predicted object. ;Tinasking of objects by agents augments the
utility of classification and modeling. The advaggaof body as the first classified and modeled
object is that it is always accessible, and thgents do not need additional skills for object
tracking.

8. Modeling functions of mind

Modeling, which can be defined as prediction oicpation of something unperceived, is the
second major function of mind after the classifmatf objects. Elements of modeling are
present in any classification, because ideal objax already models. Recognition of an object
is based on the anticipated combination of tragsfollows from the extensively explored area of
image recognition. Some of these models are fixeeraas others include parameters that are
adjusted to increase the likelihood of a match betwthe model and sensorial data (Perlovsky,
Deming, & llin, 2011). For example, distance to tigect can be used as a parameter which
affects the size and resolution of the image asagels position relative to other objects. These
simple models belong to the primary modeling systehere ideal objects are not connected and
therefore not used for prediction or anticipatids@mething different than what is perceived.
Some of them are pure sensations, and otherstagrahsensation-actions. As an example of
sensation-action, consider a moth that by insstats laying eggs after recognizing its host
plant.

Advanced models that establish relationships betwasal objects belong to the secondary
modeling system (Sebeok, 1987). For example, ifcaditempts to eat a wasp and gets stung,
then it connects the ideal object of a wasp witim.pas a result, this bird will not attempt to eat
anything that looks like a wasp because the im&genasp reminds it of pain. It was suggested
that the secondary modeling system is handled &éyntierpretive component of the brain,
whereas cybernetic and instinctive components leatheél primary modeling (Barbieri, 2011).
The secondary modeling system establishes linkgdagt various ideal objects, and therefore
allows agents to develop flexible relationshipsagetn signs and functions. The origin of the
secondary modeling system can be associated vatarttergence of powerful sense organs that
provided animals with more information than wasdezkfor immediate functions. As a result,
the classification of objects became more detailedi partially independent from their utility.
Using a combination of a large number of traitsireahs are able to recognize individual objects,
associate them with each other, and make a meagalofitheir living space. Individual objects
are then united into functionally relevant clasgesmals also can use abstract ideal objects that
correspond to individual traits (e.g., color, shagrewveight) of real objects. Dynamic models
associate the current state of an object with éustiates of the same object. They are used by



predators to predict the movement of their preyso&gtion models predict the presence of one
object from the observation of another kind of ehj&or example, animals associate smoke
with forest fires and attempt to escape to a safation.

One of the recent approaches to model-buildingmadic logic (Perlovsky et al., 2011). The
idea is to maximize the likelihood of matching beém the set of models with adjustable
parameters to the set of empirical data. Each muate¢sponds to a potential object, which can
be added or deleted in the process of optimizafibe.accuracy of comparison between object-
models increases and model parameters are adpstgatimization progresses. This approach
explains two important aspects of modeling. Fuistection of objects is not possible without
models because models specify what we are lookingdhd second, objects can be measured
using optimal parameters of object-models (althainghis not the only way to measure objects).
Because the data are referenced by space andiode)s include motion equations and yield
plausible trajectories of object-models. Howevérobject-models identified with this method
are primary ideal objects (i.e., they belong toghenary modeling system). Connections
between primary objects have to be establishedhateer level of the hierarchy of objects
(Perlovsky et al., 2011).

Models are the main subject of Peirce’s semiotit®ere the perceived object is a sign vehicle
that brings into attention the interpretant, oroassed ideal object. The primary modeling
system operates with icons, which are associatédisolated ideal objects (sensations or
sensation-actions), whereas the secondary modg}stgm also includes indexes which are the
links between ideal objects (Sebeok & Danesi, 20B8irce, however, viewed sign relationships
as components of the world rather than models dpeel by agents. He believed that models
were embedded in the world. The danger of thisogbjbhy (i.e., objective idealism) is that it
easily leads to dogmatism as models become ovested. But how can we evaluate the
relationship between a model and reality? Modetsbzused in two ways: they can be trusted
and they can be tested. When a bird does not attensptch wasps after being stung, it trusts
the model of a wasp. However, not all models geraeproducible results, and therefore
models need to be tested and modified if necessary.

9. Testing models

Model testing is one of the most important act@stin science, and it has direct implications for
epistemology (Cariani, 2011; Popper, 1999; Ros8811Turchin, 1977). Animals also test
models, but they do not run experiments for thes skesting hypotheses as humans do. Instead,
they evaluate the success rates of their behastetkgies and establish preferences for more
successful behaviors. In this way, predators leam to chase and capture prey, and birds learn
how to attract the attention of predators away fthaeir nests.

Model testing is a complex procedure that determihpredictions generated by the model
match the real world. In the simplest case, an tageasures the initial state of the object, and
the obtained results are used as input for the m@ten the output of the model is compared to
the measurement of the final state of the objext,ibthey match, the test is considered
successful (Cariani, 2011; Rosen, 1991; Turchii@,719To formalize model testing, we need to
generalize our terms. First, the expression “ihgiate of the object” implies that agents have a
method for tracking objects. In particular, eacfeotO is associated with the final objgg{O),



whereG is the tracking function. Second, objects are attarized either quantitatively by
measurements or qualitatively by the identificatddmndividual features or by classifying whole
objects. In result, each objegdtbecomes associated with some ideal oly§€) in mind, which

is interpreted as a measurement of that objegiefreral, agents use multiple measurement
methoddM,, M, ... M, which are applicable in different situations. Sarly, in science, we use
different measurement devices and sensors to dkaracobjects. Finally, the model is a mgp,
between ideal objects in mind. For example, a dyoanodel associates initial measurements of
an object with measurements of its final state.nfsieccessful model testing can be represented
by a commuting diagram (Fig. 1), where measureroktite final state of the objed¥,(G(0)),
matches to the model output from the measuremethieahitial state of the object used as input,
F(M1(O)). Two measurement methollls andM, may be the same, but in the general case they
are different. If the equatidv(G(O)) = F(M1(0)) is true for all available objects, then the
modelF is universal relative to measurement methiddseindM, and tracking metho@.

My(0) ———» F(M,(0)) = M,(G(O))

M, M,

o —S 5 GO

Figure 1. Commuting diagram of model testing, andM, are measurement methods for the
initial objectO, and final objectG(O), respectivelyG is the object tracking function, afdis
the map between ideal objects in the model.

Commuting diagrams, similar to Fig. 1, were projogeeviously (Cariani, 2011), but function
G was interpreted as objective natural dynamiceiefiorld. In contrast, | associate functi@n
with an agent’s ability to track or manipulate altge An example of non-trivial object tracking
is the association of the “morning star” with tlevéning star” (i.e., planet Venus) on the basis
of the model of planetary movement. This examplesitates that all four components of the
model relationt, G, M1, M) are interdependent epistemic tools, and one casmganay help
us to improve another component.

Cariani suggested that the manipulation of objectise reverse of measurement, and therefore
he changed the direction of functibh (Cariani, 2011). This approach, however, implies t

real objects are created from ideal objects witlaowyt matter. In contrast, | suggest associating
the manipulation of objects with various trackingdétionsG. SomeG-functions may represent a
passive experiment, where objects are mapped itonral future state, whereas otfger
functions represent active experiments where obj@e mapped into their products after
specific manipulations. If we want to construct aagtodels that describe multiple methods of
object manipulation, then each methahould be linked with a corresponding moeand
object tracking metho@;.

Commuting diagrams of model testing capture a uapportant aspect of epistemology: the
equivalence is achieved in the domain of ideal adbjeather than in the domain of real objects.



Thus, different models may equally well captureshme process or relationship in the real
world. The second conclusion is that models aragdwested together with measurement
methods and tracking methods, which are usuallgrigghin physics. As a result, agents from
one communication system cannot take advantagedéis developed within another
communication system if measurement methods aoHlitigamethods do not match.

According to the critical rationalism of Poppemadel, whose predictions are wrong, should be
removed from the domain of science (Popper, 1998)vever, this rarely happens; instead,
model componentd=( G, M;, M) are adjusted to make the diagram in Fig. 1 cormguPopper
condemned this practice because it makes hypotheselsifiable. However, Popper’s
argument does not make sense from the evolutiqrang of view. If animals rejected any

model that once had generated a wrong result,tttegnwould soon run out of models and fail to
perform their functions. Any model is a produceoblution and learning and integrates long-
term experience of agents. It is better to haveraatcurate or non-universal model than no
model at all. This explains why models are so gégsi both in biological evolution and in
human culture.

10. Moddl transfer between individuals

Most models used by animals are not communicatether individuals. Thus, each animal has
to develop its own models based on trial and exsowell as heritable predispositions. However,
social interactions may facilitate the developnafithodels in young animals. For example,
animals may copy the behavior of their parentserahtually acquire their models in a faster
way than by pure trial and error. However, effitiecammunication of models is possible only
by language, which corresponds to the culturalllefzeemiosis, following the terminology of
Kull (Kull, 2009). In language, signs do not onlyreespond to ideal objects, they also replicate
the structure of relationships between ideal objecthe model. Thus, language itself becomes
the modeling environment called the tertiary maugbystem (Sebeok & Danesi, 2000).
Language is based on symbols which are signs whesaings are established by convention
within the communication system. Then, a messagietwio (or more) interconnected symbols
is interpreted as a link between correspondingl idlefcts within the model. Thus, the tertiary
modeling system is based on symbols (Sebeok & Daz2@30).

In conclusion, minimal mind is a tool used by agentclassify and model the objects.
Classification ends up at the ideal object, whietves as a checkpoint to initiate certain physical
or mental functions. Mind is projected to appeahimi eukaryotic cells with well-developed
epigenetic regulation because these mechanismsocaert DNA segments into standard
information-processing modules with multiple atteeaomains and flexible control.
Classification and modeling of objects had staftech the body of agent and then expanded to
external objects. Modeling functions of mind praged from primary models that simply
support classification of objects to secondary nethat interconnect ideal objects, and finally,
to tertiary models that can be communicated toragents.
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