
&p.1:Abstract We simulated male gypsy moth flight phenol-
ogy for the location of 1371 weather stations east of
100° W longitude and north of 35° N latitude in North
America. The output of these simulations, based on aver-
age weather conditions from 1961 to 1990, was submit-
ted to two map-interpolation methods: multiple regres-
sion and universal kriging. Multiple regression was
found to be as accurate as universal kriging and demands
less computing power. A map of the date of peak male
gypsy moth flight was generated by universal kriging.
This map itself constitutes a useful pest-management
planning tool; in addition, the map delineates the poten-
tial range of the gypsy moth based on its seasonality at
the northern edge of its current distribution in eastern
North America. The simulation and map-interpolation
methods described in this paper thus constitute an inter-
esting approach to the study and monitoring of the eco-
logical impacts of climate change and shifts in land-use
patterns at the sub-continental level.
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Introduction

There is growing scientific interest in variation of the
phenology of the landscape in response to climatic fac-
tors, especially temperature and moisture. Plants, micro-
organisms and the vast majority of animals that make up
the ecosystems are poikilotherms, and the rates of their
biological reactions depend on temperature and mois-
ture. Climatic fluctuations can lead to spatial and tempo-

ral variations in the development of, and synchrony be-
tween, different groups of organisms. Such variation, in
turn, generates landscape-level spatial and temporal pat-
terns in the abundance and quality of organisms. A better
understanding of the underlying causes of such spatial
patterns may clarify the influence of temperature-depen-
dent phenomena on the outcome of ecological processes
such as seasonality, migration and population dynamics
(Coulson et al. 1993; Pulliam et al. 1992; With 1994).
This knowledge is central to our ability to understand
ecosystems and to predict the impact of natural and man-
made changes in the climatic environment (Duffy et al.
1994; de Groot et al. 1995).

The ability to predict the development of organisms
accurately in heterogeneous landscapes is also a critical
element of area-wide pest management (Bell and Hardee
1994; Gressel et al. 1996; Lamp and Zhao 1993), which
is a spatial extension of the Integrated Pest Management
(IPM) concepts developed in the 1970s (Huffaker 1980;
Ruesink 1976). IPM was motivated partly by a need to
reduce the use of chemical pesticides in the management
of agricultural crops and forests. One of the cornerstones
of IPM is precise delivery of pesticides to enhance effi-
cacy, reduce side-effects and decrease the need for re-
peated applications. This remains true in the context of
area-wide pest management. In addition, demand for
timing accuracy in conjunction with biological control
methods, especially microorganisms, and other pest
management tools such as semiochemicals (e.g.
pheromones, allomones) is on the increase. The way that
many of these products work is intricately linked to the
phenological state and behaviour of the target organisms,
which are often susceptible to these products for only a
short period in their life cycle.

Due to the importance of timing and synchrony in
ecology and pest management, considerable attention
has been focused on the development of phenology mod-
els. Much less effort has been devoted to the application
of these models to generating area-wide forecasts over
large, heterogeneous landscapes. Régnière (1996) de-
signed a generalized approach to the use of temperature-
driven simulation models in area-wide pest management.
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This approach was incorporated into a system called
BioSIM (Régnière and Logan 1996; Régnière et al.
1995a). In this approach, some arbitrary feature of model
output (e.g. the date of occurrence of a specific develop-
mental stage) is related, by multiple regression, to the lo-
cation, elevation, slope and aspect of a set of target sites
distributed over the area of interest. Temperature input
for the simulations is assembled from a set of nearby
weather stations, after adjustment for differences in ele-
vation, latitude and exposure to sunlight, and taking into
account major maritime influences on thermal gradients.
The resulting regression model, called a target function
by Schaub et al. (1995), is then used to transform alge-
braically a digital elevation model (DEM) of the area in-
to a new geo-referenced coverage which Régnière (1996)
called a Target Event Map (TEM). The spatial patterns in
this TEM can then be analysed or incorporated into deci-
sion-making processes. This approach is not limited to
timing issues, as any feature derived from the output of
temperature-driven simulation models can be the object
of such analysis. In addition, BioSIM has been modified
to simulate precipitation as well as air temperature.
Thus, the outcome of a wide variety of temperature- and
moisture-driven ecological phenomena can be modelled
and mapped using BioSIM.

BioSIM was initially developed and tested for scales
of 1–1000 km2 (Régnière et al. 1995b). However, the
same approach can conceivably be applied to much larg-
er areas (>10,000 km2). This scale would be useful in the
prediction and interpretation of broad spatio-temporal
patterns in temperature- and moisture-driven phenomena
in response to global change (climate or land-use). How-
ever, it is not clear whether the multiple regression ap-
proach to map generation proposed by Régnière (1996)
is well suited to such a scale. Geographical variation in
the weather can be affected by major geologicial features
that can lead to complex spatial patterns and autocorrela-
tion in model outputs, making multiple regression inap-
propriate.

In this paper, we compare multiple regression and uni-
versal kriging as methods for mapping phenology model
output at the sub-continental scale. Kriging is a commonly
used geostatistical interpolation method based on spatial
autocorrelation (Issaks and Srivastava 1989). As a case
study, this comparison is made for a map of the expected
date of the male gypsy moth, Lymantria dispar(Lepidop-
tera: Lymantriidae), peak flight over northeastern North
America. We also discuss further generalization of the tar-
get-function approach to take into account an arbitrary
number of continuous and categorical variables in project-
ing simulation model outputs to the landscape level.

Methods
As a case study, we used a temperature-driven model of gypsy
moth development described and validated by Régnière and
Sharov (1998). This model was assembled from a collection of
sub-models describing the developmental response to temperature
of post-diapause eggs (Johnson et al. 1983), the first four larval
stages (Logan et al. 1991), and the subsequent life stages until
moth emergence (Sheehan 1992). Daily minimum and maximum

air temperature are used as inputs for the model, which then yields
the daily number of living adult moths of both sexes.

We obtained a digital elevation model (DEM) for eastern
North America from World Wide Web site http://
edcwww.cr.usgs.gov/landdaac/gtopo30/gtopo30.html. This DEM
was cropped to the south at 35° N, to the north at 52° N latitude
and to the west at 100° W longitude. Its resolution was reduced to
2 arc min (approximately 4 km) by averaging neighbouring eleva-
tions at an original resolution of 30 arc s (approximately 1 km).
Because of the low resolution of this DEM, there was no point in
including slope and aspect in this study.

Historical air temperature data for the US portion of the map
were downloaded from the US National Climatic Data Center’s
Historical Climatology Network (USHCN) (World Wide Web site
ftp:/ftp.ncdc.noaa.gov/pub/data/ushcn). These data, contained in
files URBAN.MIN and URBAN.MAX, consist of monthly aver-
age minimum and maximum temperatures, by year, corrected for
biases due to urban development. The latitude, longitude and ele-
vation of the weather stations in this database were obtained from
file STATION.INVENTORY. From these monthly means, normals
for the latest standard normal-generating period (SNGP,
1961–1990) were calculated for the creation of a database of nor-
mals for BioSIM. These normals are mean monthly average mini-
mum, mean and maximum air temperatures as well as extreme
minimum and maximum temperatures. BioSIM uses extremes to
generate stochastic daily temperature data (Régnière and Bolstad
1994). Extremes were estimated for each station from the devia-
tion between the overall monthly mean minimum or maximum
(Mmin, Mmax) and the lowest monthly mean minimum or maximum
recorded over the SNGP (Lmin, Lmax):

Xmin=Mmin–7.5(Lmin−Mmin)
Xmax=Mmax+7.5(Lmax−Mmax)

(1)

The factor of 7.5 produced realistic daily temperature ranges com-
pared with actual ranges. Air temperature data for the Canadian
portion of the map were obtained from the Canadian Monthly Cli-
mate Data and 1961–1990 Normals and Monthly Averages 1993
CD-ROM (Climate Information Branch, Environment Canada, Ot-
tawa, Ontario, Canada). These data were used without modifica-
tion.

Due to the stochastic nature of the air temperature regime as-
sembly algorithm in BioSIM (see Régnière and Bolstad 1994),
five replicated simulations were run for each of the 1371 points
corresponding to the weather stations in our database located in
the area covered by the DEM (Fig. 1). A table consisting of lati-
tude N, longitude W, elevation E and date of peak moth abundance
D (averaged over replicates) was compiled from model outputs.
Dates in this table were limited to Julian Day 273 (3rd week of
September). We used this date as a realistic limit beyond which
the gypsy moth would be unable to complete its life cycle and thus
would not persist (see Régnière and Sharov 1998). This table is
hereafter referred to as the dataset.

As a first step in the comparison of kriging and multiple re-
gression as interpolation methods, three universal kriging detrend-
ing models were fitted to the model output table:

D=a+αE (2)
D=a+αE+bN+cW (3)
D=a+αE+bN+cW+dN2+eW2+ƒNW (4)

where the term in E is an external drift term, terms in N and W are
trend terms and α, a–f are parameters. We first constructed an iso-
tropic semi-variogram from the residuals of each detrending mod-
el, using 50 lags of 7 km (with a search tolerance of ±3.5 km) with
module GAM2V of the GSLIB library (Deutsch and Journel
1992). Each of the three resulting semi-variograms was fitted with
three models: spherical, exponential and Gaussian

(5)

γ̂h=c0+c1(1–e–h/a) (6)
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γ̂h=c0+c1[1–e–(h/a)2] (7)

where γ̂h is the semi-variance of pairs of points located a distance
h apart, c0 is the nugget, c1 is the semi-variance contribution
(sill–nugget, see Isaaks and Srivastava 1989) and a is the semi-va-
riogram range.

Parameters for Eqs. 5–7 were estimated using Powell’s (1965)
iterative non-linear regression algorithm by weighted least-squares
rather than by ordinary least-squares, as suggested by Cressie
(1993), to reduce potential variance estimate bias. The algorithm
minimized the sum of weighted squared residuals given by:

(8)

where N(hi) is the number of distinct pairs of points contributing
to the estimate γ(hj) of semi-variance at lag hj, and γ̂(hj) is the ex-
pected semi-variance. The best semi-variogram model was select-
ed on the basis of goodness of fit as well as graphical examination,
placing particular emphasis on fit at or near the nugget.

The interpolation multiple regression model used was a 26-
term second-degree polynomial in N, N2, W, W2, E, E2, NW, WE,
NE, NW2, EW2 WN2, WE2, EN2, NE2, WNE, N2W2, W2E2, N2E2,
NEW2, WEN2, WNE2, EN2W2, NW2E2, WN2E2, WN2E2 and
W2E2N2. The comparison of universal kriging and multiple regres-
sion was done using a two-stage cross-validation process. The da-
taset was divided into two independent halves. In each stage of
cross-validation, one half of the data was used to estimate a new
set of detrending and semi-variogram or multiple regression pa-
rameters, while the other half served to compute the cross-valida-
tion coefficient of determination:

(9)

where Di is the observed date at location i (and n is half the num-
ber of locations in the whole dataset), D̄i is the average observed
date in the half data set, and D̂i is the date predicted either by the
multiple regression model or by the universal kriging algorithm.
Universal kriging was done with module XVKT3D of the GSLIB
library (Deutsch and Journel 1992), using a search radius of 500
km and estimation based on the 10–20 nearest sample points. Av-
erage bias β was also calculated:

(10)

Kriging cross-validation results obtained with detrending models
2, 3 and 4 were compared with the results obtained with the 26-
term multiple regression model. Finally, a map of the expected
date of peak male gypsy moth flight was prepared using KTB3D
of the GSLIB library (Deutsch and Journel 1992) and our DEM as
the underlying drift map.

Results

Weather stations in our database were not evenly distrib-
uted over the geographical area covered by our DEM.
Much of this unevenness was due to the Canadian por-
tion of the database (Fig. 1). Stations are quite scarce in
northern Ontario and along the north shore of the St.
Lawrence estuary in Quebec. There was also a high con-
centration of stations in the St. Lawrence valley in south-
ern Quebec around Montreal. We judged that, given the
large number of stations, this somewhat uneven distribu-
tion would not unduly affect the analyses, but results ob-
tained for the northernmost latitude must be interpreted
with caution.

The 26-term multiple regression model relating the
date of peak male gypsy moth flight D to latitude, longi-

Fig. 1 Elevation map of northeastern North America showing the
location of the 1371 weather stations used as simulation points&/fig.c:
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tude and elevation provided a good overall fit (R2=0.947;
Table 1). Latitude (N, N2) explained 55.2% of total varia-
tion in D, while longitude (W, W2) and elevation (E, E2)
explained 32.0% and 3.6%, respectively. All other terms
combined explained an additional 3.9% of variation in

D, and most were highly significant (P<0.01). The curvi-
linear and interaction terms produced a relatively com-
plex response surface (Fig. 2). There was an overall
south to north gradient in moth flight date averaging 4.6
days per 100 km north. This gradient was least pro-
nounced at the western edge of the map (3 days per 100
km north), and most pronounced on the eastern seaboard
(7 days per 100 km north). There was also a pronounced
increase in the dates of moth flight from west to east, av-
eraging 1.7 days delay per 100 km east. This longitudi-
nal gradient was most pronounced in the northern section
of the study area. The influence of elevation E also var-
ied with latitude and longitude. It averaged 4.6 days per
100 m elevation, and was most pronounced to the west
and north. Several simulation points at the northeastern
limit of our geographical span were subject to the im-
posed constraint that D<274. However, we verified that
removal of these points from the analysis did not change
the regression results.

Without detrending the date of peak flight other than
for external drift due to elevation (Eq. 2), semi-variance
failed to converge and exceeded a value of 250 at lags of
up to 350 km (Fig. 3a). Detrending with Eq. 3 reduced
maximum semi-variance to around 85, and a clear sill
was reached at lag distances of 125–150 km (Fig. 3b). A
more complex detrending model (Eq. 4) presented no ad-
ditional advantage (sill=80, range=125 km; Fig. 3c). We
have found that, in general, simpler detrending models
produce better universal kriging results than more com-
plex models. The spherical model (Eq. 5) had the best-fit
R2 to all semi-variograms (Table 2). However, the expo-

Table 1 Multiple regression analysis of the predicted date of peak
male gypsy moth flight in eastern North America. (N Latitude, W
longitude, E elevation)&/tbl.c:&tbl.b:

Term df Sequential Adjusted F P
SS SS

W 1 435,903 2,149 39.2 0.001
N 1 767,275 31,369 572.0 0.001
E 1 47,964 6,925 126.3 0.001
W2 1 9,030 1,866 34.0 0.001
WN 1 6,798 ,489 8.9 0.003
WE 1 ,129 ,106 1.9 0.165
N2 1 ,104 3,009 54.9 0.001
NE 1 ,369 ,522 9.5 0.002
E2 1 2,611 1,402 25.7 0.001
W2N 1 7,576 1,119 20.4 0.001
W2E 1 10,888 8,615 157.1 0.001
WN2 1 8,870 , 44 0.8 0.370
WNE 1 ,387 ,234 4.3 0.039
WE2 1 1,257 ,263 4.8 0.029
N2E 1 4,238 ,626 11.4 0.001
NE2 1 ,624 ,564 10.3 0.001
W2N2 1 1,591 2,696 49.2 0.001
W2NE 1 2 ,464 8.5 0.004
W2E2 1 2,279 3,325 60.6 0.001
WN2E 1 4,623 ,430 7.8 0.005
WNE2 1 ,501 ,347 6.3 0.012
N2E2 1 ,294 , 75 1.4 0.242
W2N2E 1 ,394 1,214 22.1 0.01
W2NE2 1 ,269 ,216 3.9 0.048
WN2E2 1 ,217 9 0.2 0.689
W2N2E2 1 1,032 1,032 18.8 0.001
Error 1345 73,764

Total 1371 1,388,985

&/tbl.b:

Fig. 2 Multiple regression describing the influence of latitude and
longitude on the date of peak male gypsy moth flight in northeast-
ern North America. Open circlesare a subset of sample simulation
points outlining the eastern edge of the continent. Surface calcu-
lated for average elevation. The biologically realistic limit to the
date of flight was set to Julian day 273 (end of the 3rd week of
September)&/fig.c:

Fig. 3a–c Isotropic semi-variograms calculated on dates of peak
male gypsy moth flight using different detrending models. a Eq. 2;
b Eq. 3; c Eq. 4. Linesare semi-variogram models: dottedis Eq. 5,
solid is Eq. 6, dashedis Eq. 7&/fig.c:
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nential model (Eq. 6) produced a more realistic estimate
of the nugget effect (Fig. 3), and was selected for cross-
validation and kriging despite its slightly lower regres-
sion R2.

The multiple regression interpolation method (using
Eq. 4) had an average cross-validation R2 of 0.941, with
a prediction bias of 0.02% (Table 3). Kriging cross-vali-
dation results were only slightly better, with R2 ranging
from 0.944 to 0.959. Prediction bias was very small in
all cases, never exceeding 0.1% of sample values. The
best cross-validation fit was obtained with Eq. 3 as a de-
trending model, but results were virtually identical to

those obtained with Eq. 2 where there is actually no de-
trending and only elevation is used as an external drift
variable.

Cross-validation prediction using kriging or regres-
sion as interpolation methods corresponded closely to
sample values, and there was no deviation from the line
of unity in any portion of the range of observed values
(Fig. 4). The frequency distributions of the cross-valida-
tion residuals (predicted−observed) were very similar be-
tween the two interpolation methods (Fig. 5). The stan-
dard deviation of the residuals was 7.6 and 6.5 days for
the multiple regression and kriging cross-validations, re-
spectively. The corresponding average absolute residual
values were 5.7 and 4.7 days. Thus, the precision of in-
terpolation by universal kriging was only marginally su-
perior to that of multiple regression.

Universal kriging, using Eq. 3 as the detrending mod-
el and Eq. 6 as the semi-variogram model, generated the
map of gypsy moth peak flight period in Fig. 6. This
map can be used to plan the deployment and retrieval of
pheromone traps for monitoring gypsy moth populations,
or the application of pheromones for mating disruption
purposes. An electronic version of this map can be ob-
tained at WWW site http://www.gypsymoth.ento.vt.edu.

Discussion and conclusions

Universal kriging and multiple regression proved to be
nearly equally precise in interpolating the output of our
temperature-driven simulation model, as determined by
cross-validation. However, kriging required more com-
puting time than did regression analysis. The regression
procedure initially proposed for the generation of TEMs
with BioSIM (Régnière 1996) therefore seems applicable
to maps at the sub-continental scale. Spatial autocorrela-
tion in simulation model outputs at this scale seems to be

Table 2 Semi-variogram non-linear regression analysis good-
ness-of-fit (R2) values&/tbl.c:&tbl.b:

Detrending Semi-variogram model
model

Spherical – Exponential – Gaussian:
Eq. 5 Eq. 6 Eq. 7

Eq. 2 0.966 0.978 0.957
Eq. 3 0.942 0.933 0.924
Eq. 4 0.918 0.903 0.900

&/tbl.b:
Table 3 Cross-validation result summary (average values of two-
step process)&/tbl.c:&tbl.b:

Kriging Multiple
regression

Eq. 2 Eq. 3 Eq. 4

Mean bias 0.14 0.11 0.04 −0.05
Mean % bias 0.06 0.05 0.02 −0.02
R2 0.956 0.959 0.944 −0.940

&/tbl.b:
&roles:

Fig. 4a, b Relationships between sampled and estimated values
of male gypsy moth peak flight dates obtained by two-stage cross
validation. a By universal kriging; b by multiple regression. (Cir-
clesStage one of cross-validation, trianglesstage two)&/fig.c:

Fig. 5 Frequency distributions of residuals (difference between
interpolated and sample values) of the cross-validations. (Pale
barsUniversal kriging, dark barsmultiple regression)&/fig.c:
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mostly explained (and removed) by the regression mod-
el, eliminating bias in interpolated values. This may be
due to the relatively simple physical processes that deter-
mine the distribution of air temperature at that scale.
Universal kriging (or some other interpolation method
based on regional estimation) offers an alternative in
cases where simple polynomial terms cannot mimic
more complex response surfaces, or at larger scales
where physical factors associated with latitude, longitude
and elevation may not be the dominant causes of the ob-
served temperature patterns.

The non-linearity captured by the 26-term multiple
regression model used to describe the spatial patterns in
the data of peak male gypsy moth flight were slight, but
resulted in a rather complex response surface (Fig. 2).
Much of this complexity probably resulted from the pro-
nounced maritime influences at the eastern edge of the
continent and broad variation in water temperature. Be-
cause of such non-linearity, the multiple regression
method should be used very carefully in extrapolation
beyond the observed range of independent variables
(polynomials are notoriously poor for extrapolation). In
the present study, there was little extrapolation except
perhaps at the northern edge of the map. However, the
simulation model predicted non-persistent gypsy moth
seasonality at much lower latitudes.

Phenology maps at the sub-continental scale can be
used not only to help plan the deployment of pest-man-

agement resources, but also to study the nature and eco-
logical consequences of seasonality over large areas in
response to changes in climate and land-use. In our ex-
ample, the current geographical distribution of the gypsy
moth, especially at its northern edge, is undoubtedly in
large part determined by climatic limitations related to
seasonality (Fig. 6). Various global warming scenarios
could be applied to long-term average temperatures and
the consequences in terms of range expansion for this
and other insect species could be mapped by the methods
proposed here. Of course, several factors in addition to
seasonality are important in determining the range and
abundance of organisms. For herbivores such as the gyp-
sy moth, vegetation patterns are also critical. Other geo-
graphically distributed variables such as soils, moisture,
the abundance of food sources, competitors or predators
as well as their synchrony with each other can be impor-
tant determinants. Perhaps the greatest advantage of mul-
tiple regression (and its generalization into variance-co-
variance analysis: general linear models algorithms) is
that it can be used to generate spatial interpolations for
the output of models driven by an arbitrary number of
geographically distributed variables, be they continuous
(e.g. moisture, planting date) or categorical (e.g. crop
species). The spatial patterns generated by such multi-
variate interpolations of simulation model outputs can
constitute the basis for comparison with observations
and the prediction of consequences of global change on
seasonality.

&p.2:Acknowledgements We gratefully acknowledge Manon Gignac
for her help in preparing the maps.

Fig. 6 Kriged map of the expected date of peak gypsy moth male
flight over northeastern North America. Note the areas where the
simulation model predicts non-persistent seasonality (darkest ar-
eas) &/fig.c:
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