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Bioeconomics of Managing the Spread of Exotic Pest Species
with Barrier Zones

Alexei A. Sharov∗

Exotic pests are serious threats to North American ecosystems; thus, economic analysis of
decisions about eradication, stopping, or slowing their spread may be critical to ecosystem
management. The proposed bioeconomic model assumes that the rate of population expansion
can be reduced (even to negative values in a case of eradication) if certain management actions
are taken along the population front. The area of management can be viewed as a dynamic
barrier zone that moves together with the population front. The lower is the target rate of
spread, the higher would be both benefits and costs of the project. The problem is to find
the optimal target rate of spread at which the present value of net benefits from managing
population spread reaches its maximum value. If a population spreads along an infinite habitat
strip, the target rate of spread is optimal if the slope of the cost function versus the rate of
spread is equal to the ratio of the average pest-related damage per unit time and unit area to the
discount rate. In a more complex model where the potential area of expansion is limited, two
local maxima of net benefits may exist: one for eradication and another for slowing the spread.
If both maxima are present, their heights are compared and the strategy that corresponds to
a higher value of net benefits is selected. The optimal strategy changes from eradication to
slowing the spread and finally to doing nothing as the area occupied by the species increases.
The model shows that slowing the spread of pest species generates economic benefits even if a
relatively small area remains uninfested. The cost of slowing the spread can be estimated from
a model of population expansion via establishment of isolated colonies beyond the moving
front. The model is applied to managing the spread of the gypsy moth (Lymantria dispar)
populations in the United States.
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1. INTRODUCTION

Invasion of exotic pests is a serious threat to
North American ecosystems.(1,2) The risk of organism
movement across natural geographic barriers is grow-
ing due to the increasing transportation activity. And
introduced species are more likely to be pests than
are native species.(3) After a new exotic pest species
becomes established and initial eradication attempts
have failed, a decision should be made whether to
continue eradication efforts, or switch to a confine-
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ment strategy that would stop or slow the population
spread. In this article, I suggest the use of economic
analysis for making a decision.

The subject of the bioeconomic theory is the
optimal management of renewable biological re-
sources.(4,5) Initial bioeconomic models in fisheries
used the concept of maximum sustainable yield, which
implies a stable equilibrium. However, natural pop-
ulations often have nonequilibrium dynamics, such
as limit cycles or chaos.(6) Exotic species may ex-
pand their range in space by forming moving waves.(7)

Economic assessment of these transition processes
requires incorporation of discount rates into the
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cost-benefits analysis. Discount rate is the instanta-
neous rate of decrease in value of any costs and ben-
efits over time. For example, a postponed payment is
beneficial for a person because he can use additional
time to get the money. In the same way, we prefer
to get money now rather than 5 year later. If future
value is adjusted according to the discount rate it is
called the present value. The present value of an activ-
ity equals the net expected revenues weighted by the
exponential function of time at which these revenues
are obtained:(4)

∫ T

0
P(t) exp(−αt) dt, (1)

where P(t) is the net revenue at time t, α is the discount
rate, and T is the time horizon. The time horizon may
be infinite, and in this case a criterion of convergence
is required. Revenues, P(t), can be both positive and
negative. Typically, discount rates vary from 2% to
7% per year.

Bioeconomic theory has been applied to pest
management, but in most cases only short-term rev-
enues have been considered.(8,9) For example, the
concept of the economic injury level, which is the cor-
nerstone of integrated pest management, is usually
applied to one growing season.(10,11) In most agricul-
tural programs, the time span from investment in pest
management to crop harvest is short, and there is no
need to use the concept of present value because in-
flation is negligible during this period. Thus, most op-
timization models in pest management concentrated
on maximizing the difference between benefits and
costs in the same year.(12–14)

Traditionally, pest eradication and confinement
programs have been based upon qualitative under-
standing of economic effects. Attempts to apply eco-
nomic models to justify eradication measures often
failed because of insufficient information and unjusti-
fied simplifications.(15,16) For example, side effects of
large-scale pesticide treatments were ignored in cost-
benefit analyses of several eradication programs.(15)

Monitoring systems were often inefficient, and the
range of a species could be underestimated. How-
ever, new technologies (effective traps, geographic
information systems, etc.) provide tools for a sound
economic analysis of eradication and confinement
activities. Information on the ecological effects of
many invading pest species has substantially increased
over the last decade, making economic analyses
possible.

In this article, I focus on the use of only one kind
of strategy against established exotic pests: barrier

zones. I define a barrier zone as any pest manage-
ment activity performed in the area adjacent to the
population front and targeted at modifying the rate
of population spread. If the population front moves
(foreword or backward), then the barrier zone should
move too, in accordance with the definition. Barrier
zones can be used not just for stopping the spread of
a pest species, but also for slowing the spread, and for
eradication.

Barrier zones have been used against several in-
sect species. In 1923, a barrier zone was established
along the Hudson River to prevent the spread of
the gypsy moth, Lymantria dispar (L.), in the United
States.(17) It was managed until 1941 when it finally be-
came infested. The barrier did not stop the advance
of the population front, but the rates of spread were
considerably reduced.(18) Currently, the USDA Forest
Service is conducting the Slow-the-Spread (STS) pro-
gram to slow the expansion of gypsy moth populations
to the west and south by early detection and eradica-
tion of small isolated colonies ahead of the moving
front.(19) In the Appalachian Mountains, where suffi-
cient historical data was available, the average rate of
spread has been reduced from 21 to 8.6 km/yr.(20)

After the screwworm (Cochliomya hominivorex
Coquerel) was successfully eradicated from the
United States in 1966, a barrier zone was set along
the border of Mexico to prevent the reinvasion of
this cattle parasite.(21) Screwworm populations were
managed using sterile insect release. Later, the eradi-
cation program was expanded to Mexico and Central
American countries with a goal to move the barrier
zone toward Panama.

Before africanized honeybees (Apis mellifera L.)
entered the United States, there was an attempt to
stop their spread in Mexico.(22) In 1985, the USDA
established a Bee Regulated Zone in the Tehuantepec
region. However, this zone was soon invaded and the
goals of the project were transformed into slowing the
spread. It is believed that the project has postponed
the invasion of africanized honeybees by 2 years.

The boll weevil (Anthonomus grandis Boheman)
was successfully eradicated in Virginia, both
Carolinas, Georgia, Florida, Alabama, California,
and Arizona.(23) However, further eradication was
more difficult than expected because of increased
insect resistance, decreased abundance of natural
enemies, and other environmental and economic
factors. Whether complete eradication of the boll
weevil in the United States is possible or not, it is
important to keep the pest from spreading back into
areas where it has been eradicated. Thus, barrier
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zones are maintained along the borders of the area
where eradication was successful.

In this article, I present a bioeconomic model of a
barrier zone that determines economic benefits from
using a barrier zone (Section 2), and optimizes the
management of a barrier zone (Section 3). The model
is then applied it to the problem of gypsy moth spread
in North America as a case study (Section 4). The
gypsy moth is a good example for this analysis be-
cause: (1) there is an ongoing project on slowing the
spread of this species,(24) and (2) historical data col-
lected with pheromone-baited traps are extensive in
both space and time.

2. MODEL OF ECONOMIC BENEFITS
FROM USING BARRIER ZONES

In this section, I describe a model of economic
benefits from modifying the rate of spread of an in-
vasive pest species with a barrier zone.(25) In the sim-
plest version of the model (Section 2.1), I assume that
the barrier zone together with the population front
move along an infinite habitat strip with a uniform
rate, which is smaller than the natural rate of spread.
The slower is the target rate of spread, the higher
is the cost because more intensive pest management
is needed within the barrier zone. The model deter-
mines the optimal target rate of spread that maximizes
net benefits. Then the model is generalized for a non-
uniform population spread in a limited area (Section
2.2), and finally a particular case of spread in a rect-
angular area is examined in detail (Section 2.3).

2.1. Uniform Spread in an Infinite Habitat Strip

The simplest version of the model assumes that
a pest species spreads along an infinite habitat strip
(Fig. 1). This assumption may be valid if the popula-
tion has spread far enough away from the introduction
point but a large area is not infested yet. In this case,
the optimal solution would be a constant target rate of
population spread. Thus, a traveling wave technique
can be used to determine the rate of spread.

If there is no barrier zone, then the species spreads
at its maximum rate of vmax. In a space-time diagram,
damage occurs in the area below the line x = tvmax

Fig. 1. Spread of a population along an infinite habitat strip.
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Fig. 2. Space-time diagram of benefits from slowing the spread of
a pest species.

(Fig. 2). With a barrier zone, the rate of spread is re-
duced to v; then damage occurs in the area below the
line x = vt . Thus, benefits from slowing the spread
occur in the shaded area between lines x = tvmax and
x = vt (Fig. 2). Benefits are discounted with time (i.e.,
immediate benefits are more valuable than postponed
benefits). The present value of benefits from slowing
the spread per unit length of the population front is

B =
∫ ∞

0
t D(vmax − v)e−αt = D(vmax − v)

α2
, (2)

where D is the damage per unit area per year, and α

is the discount rate per year.
The cost of the barrier zone per unit length along

the population front, C(v), represents the minimum
cost of maintaining the target rate of population
spread, v, which implies that all activities in the bar-
rier zone are optimized. The smaller is the target rate
of spread, v, the higher is the cost of the program
(Fig. 3A). If the spread is not managed, then the cost
would be zero, and the population would spread with
its natural rate, vmax; hence, C(vmax) = 0. C(0) is the
cost of stopping the spread.

The present value of net benefits, NB, is equal to
benefits B minus costs that are discounted with time

NB = B −
∫ ∞

0
C(v)e−αt = D(vmax − v)

α2
− C(v)

α
.

(3)

The optimal solution corresponds to the maximum
of net benefits, NB. Thus, the optimal target rate of
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Fig. 3. Cost, C(v), of slowing the spread
per unit length of the barrier zone as a
function of target rate of population
spread, v (A); determining the optimal
target rate of spread, v∗ (B).

population spread can be found by solving the equa-
tion dNB/dv = 0. The solution is

dC
dv

= − D
α

. (4)

This equation means that the slope of the cost function
should be equal to the ratio of damage rate, D, to
the discount rate, α. In Fig. 3B, the line with a slope
of −D/α touches the cost function at the point that
corresponds to the optimal target rate of spread, v∗.

If damage, D, is high, then the slope, D/α, is
steep; hence, the target rate of spread is low. Pest
management in the barrier zone should be aggressive
to achieve this rate of spread. But if damage is low,
then the slope, D/α, is gentle; hence, the target rate of
spread is large, and little pest management is needed
in the barrier zone. Equation (4) may have no solution
for positive rates of spread if the damage is too low
(Fig. 4A), or too high (Fig. 4B). In the former case, the
optimal strategy is to do nothing. In the latter case, a
solution may exist for some negative rate of spread.
A negative rate of spread means that the population
front retreats due to barrier-zone management. Even-
tually, it leads to eradication of the species. If damage
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Fig. 4. Two cases where Equation (4) has
no solution for positive rates of spread:
(A) damage is too low and doing nothing
is the best strategy; (B) damage is too
high and eradication (negative rate of
spread, (v1) is the best strategy.

is so high that there is no solution of Equation (4) even
for negative rates of spread, then eradication should
be done in one step in the entire area rather than with
a barrier zone.

Equation (4) assumes unlimited operational
funds for the project, which may not be realistic. In
practice, the cost of the optimal strategy for slowing
the spread may exceed available funding. In this case,
slowing the spread it is still beneficial, but the target
rate of spread should be increased to reduce the cost.

2.2. Nonuniform Spread in a Limited Area

The model described above has serious limita-
tions. It cannot be applied to populations that have
just established or have spread already through most
of their potential area. Sharov and Liebhold(25) devel-
oped two more realistic models: (1) population spread
in a rectangular area from one side to the opposite
side, and (2) spread in all directions from the cen-
ter (Fig. 5). In both cases, the optimal target rate of
population spread is a function of time rather than a
constant. Thus, more complex optimization methods
are needed.
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A B

Fig. 5. Population spread in a rectangular area (A), and radial
spread in all directions (B).

In both cases the present value of total benefits
from slowing population spread is

TB = D ·
∫∫

S
L(x(t)) exp(−αt) dt dx, (5)

where D is the average damage caused by the pest
per unit area per unit time, L(x) is the length of the
population front after it moved by distance x from the
introduction point, and S is the shaded area in Fig. 2. If
the population spreads in a rectangular area (Fig. 5A),
then the length of the population front, L(x), is a con-
stant. But if the population spreads in all directions
from one point (Fig. 5B), then the length of the front
increases linearly with increasing distance from the
center: L(x) = 2πx.

Sharov and Liebhold(25) showed that Equation
(5) is equal to

TB = D
α

[ ∫ xmax

0
L(x) exp(−αx/vmax) dx

−
∫ ∞

0
v(t)L(x(t)) exp(−αt)] dt

]
, (6)

where xmax is the most distant point in the uninfested
area, and x0 = x(t0) is the starting location of the
population front.

The cost of the entire barrier zone at time t is
C(v(t))L(x(t)). The present value of total costs for the
entire project starting from current time, t0, equals

TC =
∫ ∞

0
C(v(t))L(x(t)) exp(−αt) dt . (7)

Combining costs and benefits (Equations (6) and (7))
we get the present value of total net benefits

TNB = D
α

∫ xmax

0
L(x) exp(−αx/vmax) dx

−
∫ ∞

0

[
D
α

v(t) + C(v(t))
]

L(x(t))

× exp(−αt) dt. (8)

The function x(t) is considered a control function, and
total net benefits, TNB, is an objective variable to be

maximized. The first term in Equation (8) does not
depend on function x(t). Thus, the optimal strategy
can be found by minimizing the second term in Equa-
tion (8). This minimum can be estimated using ana-
lytical or numerical methods, depending on the com-
plexity of functions L(x) and C(v). Total net benefits
may have several local maxima. In this case it is nec-
essary to select the local maximum with the highest
value of TNB.

2.3. Spread in a Rectangular Area

If a population spreads in a rectangular area
(Fig. 5A), then the length of the population front,
L(x), is a constant. The second term in Equation (8)
has a minimum if and only if the integral∫ tmax

t0

[
Dx′(t)

α
+ C(x′(t))

]
exp[−α(t − t0)] dt (9)

has a minimum, where tmax is the time when the pop-
ulation reaches the end of its potential area (if v >

0), or when it is completely eradicated (if v < 0). The
optimal function x(t) can be found by using the Euler
equation(26)

d
dt

(
∂ F
∂x′

)
− ∂ F

∂x
= 0, (10)

where x′ = v = dx/dt and

F(t, x, x′) =
[

Dx′

α
+ C(x′)

]
exp[−α(t − t0)]. (11)

The Euler’s equation (Equation (10)) yields the fol-
lowing differential equation, which can be used for es-
timating the optimal target rate of population spread

v′ =
(

D + α
dC
dv

) (
d2C
dv2

)−1

, (12)

where v′ = dv/dt = d2x/dt2 is the acceleration of
spread.

Equation (12) generates a family of lines that de-
viate up and down from the stationary solution v∗ de-
termined by Equation (4) (Fig. 6). Branches of lines
between values 0 and v∗ correspond to minimum net
benefits and will not be considered further. Lines with
the rate of spread >v∗ and <0 have maximum net
benefits. Lines with a v > v∗ correspond to slowing
the spread, and lines with v < 0 correspond to eradi-
cation. To find a particular solution of Equation (12)
we used two boundary conditions: one for slowing
population spread, and another for eradication. Both
boundary conditions describe the situation at the mo-
ment when pest management is used for the last time.
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This is either abandoning of slowing the spread when
the population front comes too close to the end of the
area that potentially can become infested, or complet-
ing the eradication program.

The boundary condition for slowing the spread
is derived as follows. Let us assume that the distance
to the end of the area is �x, and the rate of spread
is controlled at v for the last time before abandoning
the barrier zone. The time interval left for keeping the
barrier zone is�t, which is much smaller than�x/vmax.
The present value of total net benefits (Equation (8))
is approximately equal to

TNB = D · L
α

(vmax − v)[1 − exp (−α · �x/vmax)]

· �t − L · C(v) · �t, (13)

where the first term represents benefits, and the sec-
ond term represents costs. Slowing population spread
is terminated when the derivative dTNB/dv = 0 at
v = vmax. Applying these conditions to Equation (13),
we get

−C′(vmax) = D
α

[
1 − exp

(
−α

�x
vmax

)]
. (14)

The boundary condition for slowing population
spread is the following: management of the rate of
spread terminates when the distance to the end of the
area is equal to �x (Equation (14)).

Now we derive the boundary condition for erad-
ication. Let us assume that the population has been
reduced to such a small size that we can ignore the
damage component of total net benefits and assume
a constant (negative) rate of spread. Time left until
complete eradication is proportional to (−1/v). Thus,
total costs are proportional to [−C(v)/v]. The op-

timal rate of spread corresponds to a minimum of
this expression, which can be found by setting the
derivative = 0:

v
dC
dv

− C(v) = 0. (15)

The optimal rate of spread, v, at the end of eradication
(x = 0) is the solution of Equation (15). This is the
boundary condition for eradication.

A typical solution of Euler’s equation with
boundary conditions is shown in Fig. 7. The horizontal
axis is the location of the population front relative to
the introduction point; the total length of the poten-
tial area is 1,000 km in this example. The vertical axis
is the target rate of spread. The upper branch of the
graph corresponds to slowing the spread because the
rates of spread are positive, and the lower branch cor-
responds to eradication because rates of spread are
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Fig. 7. Optimal management of a barrier zone for a population that
spreads in a rectangular area of 1,000-km length from one side to
the opposite side. Management strategy depends on the location,
x, of the population front from the introduction point.
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negative. As the population front approaches the end
of the potential area, slowing the spread is no longer
necessary. The optimal target rate of spread becomes
equal to 20 km/yr, which is the rate of unmanaged
spread in this example.

If the population has occupied most of its poten-
tial area, then the only solution is slowing the spread
or doing nothing (upper branch in Fig. 7). But if the
pest has just arrived and has not spread far enough,
then both slowing the spread and eradication are pos-
sible solutions. These two strategies correspond to two
local maxima of net benefits. Euler’s equation does
not tell us which of these solutions is the best. Thus
we need to compare net benefits for these strategies.

Fig. 8 shows net benefits from slowing the spread
and eradication as a function of distance from the
introduction point, x. Net benefits from eradication
decrease rapidly with increasing distance; this means
that eradication is most profitable when the popula-
tion has not spread far enough from the introduction
point. Net benefits from slowing the spread change
very little with increasing distance from the introduc-
tion point. The intersection of two lines in Fig. 8 in-
dicates the maximum range size of an infestation that
can be eradicated. If the population is larger, then
slowing its further progression generates greater net
benefits than eradication. Stopping the spread is never
an optimal strategy (unless there are natural barriers)
because it generates lower net benefits than either
eradication or slowing the spread.

3. MODEL OF BARRIER ZONE
MANAGEMENT

Models of barrier zone management are needed
to estimate the cost function, C(v), for varying tar-
get rates of population spread. Although modeling of

population spread is a well-developed area in theo-
retical ecology,(27–30) there are only few models that
simulate the effect of barrier zones. Marsula and
Wissel used a reaction-diffusion model to determine
the number of sterile male insects released to prevent
the spread of a pest species.(31) This model was ap-
plied to the barrier zone against the screwworm. The
limitation of this model is that it considers a continu-
ous distribution of pest populations. Thus, the entire
barrier zone should be treated, which may be pro-
hibitively expensive for other species.

Moody and Mack simulated the spread of an
invasive plant species via establishment of iso-
lated colonies beyond the population front.(32) They
showed that eradication of small colonies can sub-
stantially reduce the rate of population expansion.
Shigesada et al. also modeled the spread of popula-
tions that produce isolated colonies, but they did not
examine the effect of colony eradication.(33) Sharov
and Liebhold derived a traveling wave equation for
populations that expand their area via establishment
of isolated colonies.(34) If not treated in time, these
colonies grow, coalesce, and eventually contribute to
the population spread (Fig. 9). This model resembles
metapopulation models because it considers individ-
ual colonies rather than individual organisms. It is
based on the following assumptions:

1. The probability of establishment of a new
colony, b(x), decreases with increasing dis-
tance, x, from the population front (Fig. 9).

2. The numbers of individuals, n(a), in a colony
increases with colony age, a.

3. At the population front, the average density of
individuals, N, is equal to the carrying capacity,
K.

x

b(x)

Infested
zone

Transition
zone

Uninfested
zone

Population
front

Fig. 9. Model of population spread via establishment of isolated
colonies; b(x) is the probability of colony establishment as a func-
tion of distance from the population front (from Reference 34).
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A traveling wave equation can be derived by as-
suming a constant velocity of spread, v. As the colony
grows from age 0 to a, the distance between this colony
and the population front decreases by av. Thus, the
number of colonies, m(a, x) of age a at distance x
from the population front is

m(a, x) = b(x + av). (16)

The number of individuals, N(x), at distance x from
the population front is

N(x) =
∫ ∞

0
m(a, x) n(a) da. (17)

At the population front, N(0) = K. Combining this
condition with Equations (16) and (17), we get the
traveling wave equation

∫ ∞

0
b(av) n(a) da = K. (18)

The rate of spread can be determined by solving this
equation analytically or numerically.

If isolated colonies are detected and eradicated
within the barrier zone, then the colonization func-
tion b(x) is truncated by the beginning of the barrier
zone (Fig. 10). Obviously, the end of the barrier zone
should correspond to the maximum distance from the
population front where isolated colonies may become
established. By substituting the new b(x) function into
Equation (18), we can estimate the expected reduc-
tion in the rate of spread due to pest management in
the barrier zone.

If the probability of colony establishment, b(x),
is a linear function of distance from the population
front (see Fig. 9), and the function of colony growth is
exponential, then the model predicts a decreasing rate

Distance from the population front

b(x)

Barrier
zone

Fig. 10. The probability of colony establishment, b(x), becomes
truncated by the beginning of the barrier zone (from Reference 34).
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zone, as predicted by the model; relative width of barrier zone is the
ratio of the barrier zone width to the width of the transition zone,
W, where colonies can become established (Fig. 9); parameter Q =
rW/vmax (modified from Reference 34).

of spread as the width of the barrier zone increases
(Fig. 11).

If the population spreads via establishment of iso-
lated colonies, then there is no need to treat the entire
barrier zone. Instead, treatment is limited to areas oc-
cupied by colonies, which may be a small fraction of
the entire barrier zone.

As the density of samples (or traps) increases,
colonies become detected earlier, and treatment costs
are smaller. But sampling costs would increase be-
cause more samples are needed. Thus there is a trade-
off between monitoring and treatment costs. The op-
timal density of traps corresponds to the minimum
sum of treatment and monitoring costs.(35)

The following simple model determines the cost
function, C(v), under three assumptions. First, the av-
erage number of colonies to be treated annually is as-
sumed independent of sample density. This should be
true if most new colonies originate from the generally
infested area rather than from other isolated colonies.
A second assumption is that the probability to detect
a colony depends solely on the number of traps within
that colony. Then the average area of a colony at the
time of detection should be proportional to z2. And
third, treatment cost per unit area is a constant. The
optimal distance between samples (or traps) in the
monitoring grid, z, can be determined by minimizing
the total cost of monitoring and treatment

C(z) = w · csample

z2
+ pz2ntreatctreat, (19)
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where w is the width of the barrier zone, which is
determined using the graph in Fig. 11; z is the distance
between samples (or traps) in the monitoring grid;
csample is the cost of an individual sample (or trap);
ctreat is treatment cost per unit area; p = 1/k, where k
is the number of traps needed to detect a colony; and
ntreat is number of colonies to be treated annually,
which is determined by equation

ntreat =
∫ x2

x1

b(x) dx, (20)

where x1 and x2 are distances from the beginning and
end of the barrier zone to the population front. The
first term in Equation (19) is the cost of monitoring,
and the second term is the cost of treatments. The
optimal distance between samples and minimum cost
are found by solving the equation dC/dz = 0. The
solution is

z = 4

√
w · csample

p · ntreat · ctreat
, (21)

Cmin = 2
√

w · csample · p · ntreat · ctreat. (22)

Costs for monitoring and treatment appear equal for
the optimal distance between samples.

Equation (22) considers the cost of detection and
eradication of isolated colonies, which is sufficient for
slowing the spread. But if the target rate of spread
is very small or negative, then it may be necessary
to treat large areas of continuously distributed pest
populations. Even if no isolated colonies become es-
tablished, the population front moves slowly forward
because of local dispersal of organisms. Let us assume
that this rate of spread equals vslow. To reduce the rate
of spread below vslow it is necessary to eradicate con-
tinuous pest populations within a band (vslow − v)
wide per year. Thus, the total cost of the barrier zone
including possible treatment of areas with continuous
species distribution is

C(v) = max[0, ctreat R(vslow − v)]

+ 2
√

w · csample · p · ntreat · ctreat, (23)

where R is the average number of treatments suffi-
cient for species eradication. These treatments are not
necessarily done in 1 year, and they may be patchy. For
example, the entire area is treated in the first year, and
then remaining spots are detected and treated individ-
ually later. The reason for using the max() function is
that expression (vslow − v) can be negative if the tar-
get rate of population spread, v, is greater than the
rate of population spread due to only local dispersal

of organisms, vslow. Equation (23) yields the value of
the cost function C(v) for the given target rate of pop-
ulation spread, v.

More complex models of barrier management
can be used if necessary. It may be important to use dif-
ferent treatment agents depending on the size of treat-
ment block. For example, chemical and even bacterial
pesticides should not be used over large continuous
areas because of possible adverse effects on nontar-
get organisms. Only species-specific treatments can be
applied in large blocks, such as viruses, pheromones,
or sterile insect releases. These treatments may ap-
pear more expensive than chemical or bacterial
pesticides.

4. CASE STUDY: MANAGING GYPSY MOTH
SPREAD IN NORTH AMERICA

4.1. Population Spread and its Management

The gypsy moth was accidentally introduced to
North America near Boston in 1869 and since that
time it has been expanding its range to the west and
south.(36) According to the map of host-plant avail-
ability (Fig. 12), the gypsy moth occupies only 1/3 of
its potential range.(37) The rate of spread in 1966–1990
was 20.78 km/yr in counties where the mean minimum
January temperature was above 7◦F.(18) Gypsy moth
females in America are flightless, which explains why
the spread is slow compared with other insect species.
Transportation of gypsy moth egg masses and other
life stages by humans is probably the most impor-
tant dispersal mechanism, which leads to the estab-
lishment of isolated colonies beyond the population
front.(17,18)

After the invention of pheromone traps it be-
came possible to detect isolated colonies with very
low population densities. Management of gypsy moth
spread via eradication of isolated colonies started in
1990 in the mountains of Virginia and West Virginia
within the Appalachian Integrated Pest Management
(AIPM) project.(38) In 1993, the USDA Forest Service
initiated the STS pilot project.(19,24) It operated in the
mountains of Virginia and West Virginia, and in the
coastal plain of North Carolina. The Upper Penin-
sula of Michigan was also a part of the project, but no
treatments were done there. In 1998, the program be-
came operational and was expanded over the entire
population front from North Carolina to Wisconsin
(Fig. 12).(24)

In the STS program, a 2-km grid of pheromone
traps is used to detect isolated colonies in a 100-km
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Fig. 12. Distribution of susceptible host
trees for the gypsy moth (modified from
Reference 37), location of the population
front in 2000, and the area of STS
program.

band along the population front (Fig. 12). The inter-
trap distance was optimized using a model(35) similar
to the one presented here. Equation (21) yields the op-
timum intertrap distance of 1.31 km. The actual inter-
trap distance is greater than the optimal one because
of cost constraints. If moth counts in traps indicate
a possible colony, then a delimiting grid with 0.5-km
intertrap distance is set to determine the boundary
of a colony before treatment. This allows targeting
of aerial treatments. Areas for delimiting grids and
treatments are initially selected by a computer, based
on several quantitative criteria. Then a map of these
areas is posted on the Internet,(39) and representatives
of each state use it for planning their actions for the
following year. These plans are discussed and finalized
at the project level. At the end, the plan of project ac-
tivities is compared with initial computer recommen-
dations to make sure that no important actions were
missed.
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Fig. 13. Annual rates of gypsy moth spread in Virginia and West Virginia.

The success of the STS program has been demon-
strated in several ways. First, the rate of population
spread was reduced by >50% in Virginia and West
Virginia after 1990 when the strategy of treating iso-
lated colonies was initiated (Fig. 13, see also Refer-
ence 20). Second, most treatments were successful,
and most isolated colonies eradicated in the STS pro-
gram never appear again.(24) Third, there is a strong
scientific foundation to the strategy implemented in
the STS, and model predictions match well with actual
program results.(34)

4.2. Model Parameters

The area that can potentially support gypsy moth
populations (Fig. 12) is distinctly subdivided into two
portions: the northern region (Michigan, Wisconsin,
and Minnesota), and the southern region (to the south
from Iowa, Illinois, and Indiana). Probably, the gypsy
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moth will spread independently in these two regions.
In this analysis we consider the southern region only,
which is the largest one. We assume the length of the
population front L = 1,000 km; this is the approxi-
mate distance from Lake Erie to the ocean shore in
North Carolina. The gypsy moth has already spread
≈1,000 km from the point of introduction, and the
depth of the potential range that remains uninfested
is ≈1,500 km (Fig. 12). Thus, xmax = 2,500 km.

The rate of uncontrolled spread is vmax =
21 km/yr.(18) Parameters of the colonization function
b(x) were estimated from historical trap catch data
in the mountains of Virginia and West Virginia.(34)

The function b(x) decreased linearly from the value
of 0.0017 per 1 km2/yr at the population front to the
zero value at the distance of 250 km. The exponential
rate of population growth in isolated colonies is r =
1.7, as derived from egg mass surveys.(34)

Annual damages caused by the gypsy moth pop-
ulations per unit area, D, was estimated using the eco-
nomic analysis of Leuschner et al.(40) The major com-
ponent of damage was the effect on residential areas,
assessed using the analysis of willingness to pay to
avoid the impact. However, damage costs were over-
estimated because defoliation was assumed to occur
every year. After the adjustment to the frequency of
defoliation the average damage is D= $380 per 1 km2/
yr.(25)

Average trapping costs in the STS program
in 1994–1995 were ctrap = $64 per trap (includ-
ing trap management, data analysis, and overheads),
and average treatment costs were $25/acre (ctreat =
$6,177/km2).(35) Parameter p = 4.1 in Equations (21)–
(23) was adjusted to match the area treated an-
nually within the STS program.(35) Eradication of
high-density gypsy moth populations requires five
treatments, as follows from the model of Sharov and
Colbert.(41) Thus, R = 5 in Equation (23). The rate of
population spread in the case if no isolated colonies
become established is assumed to be vslow = 3 km/yr,
which follows from the application of Skellam’s model
to the gypsy moth.(18)

Row et al.(42) recommended using a discount rate
of 0.04 per year. However, it may be necessary to use
a higher discount rate because of the uncertainty in
model parameters. The error in model predictions
tends to increase with time. If the discount rate is
small, the present value of total benefits is too sen-
sitive to benefits in the far future, which are predicted
with a substantial error. As a result, the error of the
total net benefits value may be large, and decisions
based on the model may have a high risk. Thus, we
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Fig. 14. Cost, C(v), and benefit, αB, for the gypsy moth barrier
zone per year per 1-km length of the barrier zone, at discount rates
α = 0.04, and α = 0.1. The difference between benefits and costs
has a maximum at the target rate of spread v = 3 km/yr.

will use two discount rate values: α = 0.04, and α =
0.1. The second value is more conservative because
the risks associated with uncertainty of predictions
are smaller.

4.3. Model Results

The cost of maintaining the barrier zone esti-
mated using Equation (23) is shown in Fig. 14. Costs
are relatively low if the target rate of spread is
>3 km/yr. To achieve lower target rates of spread
(<3 km/yr) it is necessary to eradicate high-density
gypsy moth populations over large continuous areas,
and thus the cost increases rapidly.

The optimal target rate of slowing gypsy moth
spread appears at 3 km/yr for both discount rates
α = 0.04, and α = 0.1 (Fig. 14). The discount rate has
no effect on the optimal target rate of spread because
the cost function bends sharply at v = 3 km/yr. This
bend is a simplification assumed in our model, but in
reality this transition should be smooth; then model
solutions would be sensitive to the discount rate value.
In the STS project we use a higher target rate of popu-
lation spread, 10 km/yr. The deviation from the model
is associated with funding limits and also with simpli-
fied model assumptions. In the model we assume that
newly established colonies are always small in their
range, as in the case of egg mass transportation to a
new area. However, occasionally we observed forma-
tion of much larger colonies that are difficult to treat.
It is not clear how these colonies are formed. Possi-
bly they resulted from wind-borne dispersal of small
larvae,(43) but more research is needed to answer this
question.
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According to Equation (14), slowing the rate of
gypsy moth spread is economically beneficial up to
37 km from the end of the potential species range for
α = 0.04, and 39 km for α = 0.1. Equation (15) has no
solution, which indicates that eradication of the gypsy
moth population in one step is more beneficial than
the gradual backward movement of the barrier zone.
Benefits from eradication are greater than benefits
from slowing the spread only at the initial stages of
invasion when the population front has extended by
<62 km for α = 0.04, and <16 km for α = 0.1.

Parameters of this bioeconomic model are based
on our current knowledge; some of them are rough es-
timates and may change after more detailed research.
Thus results have some degree of uncertainty and
should be updated as new information become avail-
able. The effect of specific parameters on the model
output can be explored using sensitivity analysis. We
already published the results of sensitivity analysis of
the population spread model(34) and the bioeconomic
model.(35)

5. DISCUSSION

Any bioeconomic analysis is based on the assess-
ment of costs and benefits. But when a new exotic
species arrives, there is a lack of understanding of po-
tential damage and possible management costs. If the
pest species is potentially dangerous, eradication is the
first logical option even if economic assessment is not
available. But as information about the species accu-
mulates, a reasonable evaluation of costs and benefits
of the project is needed.

Cost-benefit estimations are never absolutely
certain. We take the best knowledge and evaluate
potential strategies. As we learn more about the
species, the model and the strategy are updated. It
is important to consider all major cost components,
which include manufacturing and application of pes-
ticides and pest monitoring. Additional components
may be public relations, potential lawsuits, and risk to
human health.(44)

If the eradication project has smaller net benefits
than slowing the spread, then it should be transformed
into a slowing-the-spread program. Termination of
eradication projects is often politically charged; thus,
the benefits of some projects may have been over-
estimated and costs underestimated in order to keep
these projects going. But it is wrong to view the termi-
nation of an eradication project as a total failure. Even
if eradication was not achieved, the project might
have postponed the spread of the pest species by sev-

eral years. Postponing or slowing the spread of a pest
species generates economic benefits, as shown by the
model. Transition from an eradication objective to
slowing the spread is an adjustment in the pest con-
trol strategy that makes it more effective in a given
situation.

This study demonstrates the value of bioeco-
nomic analysis in planning programs that implement
barrier zones for managing the spread of pest species.
Our model specified optimal strategies for slowing
population spread and eradication, which may help
to avoid suboptimal decisions based on intuition. For
example, Dahlsten et al. stated that “insects that have
already colonized parts of the United States, or any
large land mass or continent, probably should not
be the targets for eradication programs in other sec-
tions of the country because of their potential for
recolonization.”(45) Our analysis demonstrates that
this statement is wrong. Eradication of small isolated
colonies of gypsy moth within barrier zones is not
only feasible, but it is economically justified because
the model predicts positive net benefits under realistic
assumptions.

The model shows that eradication can be success-
fully implemented mainly against recently established
species whose range is limited. Only in rare cases,
like the screwworm, is eradication environmentally
safe and not prohibitively expensive so that it can be
applied to large populations. Of course, as species-
specific pest control agents become less expensive,
greater numbers of species can be successfully eradi-
cated over large areas. The economics of many erad-
ication programs were never thoroughly evaluated.
For example, the boll weevil eradication project has
continued since 1977 and only partial success has been
achieved.(46) If chemical pesticides are used in erad-
ication programs it is necessary to account for side
effects on nontarget species. For example, intensive
pesticide treatments against the boll weevil in Texas
suppressed natural enemies, and as a result, serious
outbreaks of secondary pests occurred.(46)

Slowing population spread is a relatively new tool
in pest management. It was not seriously considered
before because of the emphasis on eradication or stop-
ping the spread of exotic pests. Our model demon-
strates that considerable benefits from slowing pop-
ulation spread may exist even if only a small portion
of potential range remains uninfested. In the case of
the gypsy moth, the reduction of the spread rate is
achieved by eradicating small isolated colonies be-
yond the expanding population front. Because these
colonies are usually small, treatment can be confined
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to small patches, and thus, the program has a very
limited impact on nontarget organisms. Also we found
that a new method of mating disruption with synthetic
pheromones is effective in low-density populations.
This method is ecologically safer than chemical and
bacterial pesticides because it is specific to the gypsy
moth and has no nontarget effects.

Models presented in this article have several lim-
itations. One of them is the assumption of a uniform
spread over time. Many species have cycles in their
population dynamics. During an outbreak, spread
rates may be higher because of an increased num-
ber of dispersing organisms. Moreover, some species
have density-dependent dispersal that results in a
higher proportion of migrants leaving high-density
populations.(47) Our data suggest that spread rates of
the gypsy moth increased during outbreaks of 1992–
1995 and 1999–2001 (Fig. 13); however, more data are
needed to confirm this relationship. Another limita-
tion is that the model does not consider spatial vari-
ation in parameter values (e.g., the maximal rate of
spread and management costs), although these pa-
rameters may depend on local conditions, such as
the proportion of area with favorable habitats, hu-
man population density, roads, and other factors. Our
model can be a prototype for more detailed specific
models to be used as guides for the management
of particular pest populations. These specific mod-
els may address limitations discussed above, but they
will be more complex and will need numerical opti-
mization (e.g., dynamic programming) rather than the
Euler’s equation.

Control of natural resources may depend consid-
erably on social factors; thus, the model presented in
this article cannot automatically generate decisions.
Rather, it provides information on the economic via-
bility of barrier-zone projects, which may affect deci-
sions in a political arena.(16) Large-scale pest manage-
ment projects are usually expensive and thus affected
by budget constraints. For example, theoretically it
may be optimal to eradicate the pest population in
one step, but this may require more funds than avail-
able. Shifting funds from other programs may cause
more damage to these programs than potential gains
from the eradication program. A compromise may be
reached by extending the eradication project over a
longer period. Even if the program is already in an
operational stage, it still can be affected by unfore-
seen social or environmental factors. If a more seri-
ous pest species becomes established in the country,
then it may be necessary to move a portion of funds
to manage this new species.
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